Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT

Abstract We report on the efficiency enhancement for bulk-heterojunction hybrid solar cells based on hexanoic acid treated trioctylphosphine/oleic acid-capped CdSe quantum dots (QDs) and low bandgap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4 H -cyclopenta[2,1- b ;3,4- b ′]-dithiophene)- alt -4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) compared to devices based on poly(3-hexylthiophene) (P3HT). Photovoltaic devices with optimized polymer:QD weight ratio, photoactive film thickness, thermal annealing treatment, and cathode materials exhibited a power conversion efficiency of 2.7% after spectral mismatch correction, which is the highest reported value for spherical CdSe QD based photovoltaic devices. The efficiency enhancement is attributed to the surface treatment of the QDs together with the use of the low bandgap polymer PCPDTBT leading to an increased short-circuit current density due to additional light absorption between 650 and 850 nm. Our results suggest that the hexanoic acid treatment is generally applicable to various ligand-capped CdSe and confirm that low bandgap polymers with adequate HOMO and LUMO levels are promising to be incorporated into hybrid solar cells for further device performance improvement.

[1]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.

[2]  A. Alivisatos,et al.  Controlling the Morphology of Nanocrystal–Polymer Composites for Solar Cells , 2003 .

[3]  Andreas Kornowski,et al.  Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. , 2001, Nano letters.

[4]  N. Greenham,et al.  Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers. , 2006, Physical chemistry chemical physics : PCCP.

[5]  S. Carter,et al.  Optimizing hybrid photovoltaics through annealing and ligand choice , 2009 .

[6]  A. S. Dhoot,et al.  Vertically segregated hybrid blends for photovoltaic devices with improved efficiency , 2005 .

[7]  Yong Cao,et al.  Polymer solar cells: Recent development and possible routes for improvement in the performance , 2010 .

[8]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[9]  Andreas W. Liehr,et al.  High throughput testing platform for organic Solar Cells , 2008 .

[10]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[11]  Claudia N. Hoth,et al.  Printing highly efficient organic solar cells. , 2008, Nano letters.

[12]  Masaru Kuno,et al.  Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[13]  Jan Fyenbo,et al.  Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative , 2010 .

[14]  D. Ginley,et al.  Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. , 2010, Nano letters.

[15]  Yue Wu,et al.  Performance enhancement of hybrid solar cells through chemical vapor annealing. , 2010, Nano letters.

[16]  M. Pasini,et al.  Self-Assembled Structures of Semiconductor Nanocrystals and Polymers for Photovoltaics. 2. Multilayers of CdSe Nanocrystals and Oligo(poly)thiophene-Based Molecules. Optical, Electrochemical, Photoelectrochemical, and Photoconductive Properties , 2010 .

[17]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[18]  Thomas Kietzke,et al.  Optical enhancement in semitransparent polymer photovoltaic cells , 2007 .

[19]  N. Greenham,et al.  Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers , 2003 .

[20]  J. Alford,et al.  Isolation and properties of small-bandgap fullerenes , 1998, Nature.

[21]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[22]  Yunfei Zhou,et al.  Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers , 2010 .

[23]  C. Brabec,et al.  Enhanced dissociation of charge-transfer states in narrow band gap polymer:fullerene solar cells processed with 1,8-octanedithiol , 2010 .

[24]  Christoph J. Brabec,et al.  Panchromatic Conjugated Polymers Containing Alternating Donor/Acceptor Units for Photovoltaic Applications , 2007 .

[25]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[26]  F. Krebs,et al.  Low band gap polymers for organic photovoltaics , 2007 .

[27]  A. Pron,et al.  Hybrid organic-inorganic nanomaterials: ligand effects , 2006 .

[28]  A Paul Alivisatos,et al.  Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. , 2007, Nano letters.

[29]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[30]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[31]  Donal D. C. Bradley,et al.  Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene , 2005 .

[32]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[33]  M. O. Wolf,et al.  CdSe Nanorods Functionalized with Thiol-Anchored Oligothiophenes , 2007 .

[34]  D. Ginley,et al.  The Effect of Nanoparticle Shape on the Photocarrier Dynamics and Photovoltaic Device Performance of Poly(3‐hexylthiophene):CdSe Nanoparticle Bulk Heterojunction Solar Cells , 2010 .

[35]  Jan Fyenbo,et al.  Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing , 2010 .

[36]  J. Xue,et al.  Effects of nanocrystal size and device aging on performance of hybrid poly(3-hexylthiophene):CdSe nanocrystal solar cells , 2011 .

[37]  G. Urban,et al.  Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene) , 2010 .

[38]  C. Brabec,et al.  Effect of LiF/metal electrodes on the performance of plastic solar cells , 2002 .

[39]  A Paul Alivisatos,et al.  Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. , 2004, Journal of the American Chemical Society.

[40]  Christoph J. Brabec,et al.  Bipolar Charge Transport in PCPDTBT‐PCBM Bulk‐Heterojunctions for Photovoltaic Applications , 2008 .

[41]  N. Greenham,et al.  Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles. , 2006, Nano letters.

[42]  Richard A. Mathies,et al.  Size-Controlled Growth of CdSe Nanocrystals in Microfluidic Reactors , 2003 .

[43]  A. Alivisatos,et al.  Reaction chemistry and ligand exchange at cadmium-selenide nanocrystal surfaces. , 2008, Journal of the American Chemical Society.