Low dimensional modules over quantum complete intersections in two variables
暂无分享,去创建一个
[1] C. Ringel,et al. Gorenstein-projective and semi-Gorenstein-projective modules , 2018, Algebra & Number Theory.
[2] René Marczinzik. On stable modules that are not Gorenstein projective , 2017, 1709.01132.
[3] Michael Barot,et al. Introduction to the Representation Theory of Algebras , 2014 .
[4] P. A. Bergh,et al. The stable Auslander–Reiten quiver of a quantum complete intersection , 2009, 0909.5568.
[5] Steffen Oppermann. Hochschild cohomology and homology of quantum complete intersections , 2010 .
[6] P. A. Bergh. Ext-symmetry over quantum complete intersections , 2008, 0811.4309.
[7] P. A. Bergh,et al. Cohomology of twisted tensor products , 2008, 0803.3689.
[8] C. Ringel. The Liu-schulz Example , 2007 .
[9] E. Green,et al. FINITE HOCHSCHILD COHOMOLOGY WITHOUT FINITE GLOBAL DIMENSION , 2004, math/0407108.
[10] C. Ringel. Exceptional modules are tree modules , 1998 .
[11] I. Peeva,et al. Complete intersection dimension , 1997 .
[12] R. Schulz. A non-projective module without self-extensions , 1994 .
[13] Shitian Liu,et al. The existence of bounded infinite Tr-orbits , 1994 .
[14] C. Ringel,et al. Auslander-reiten sequences with few middle terms and applications to string algebrass , 1987 .
[15] Y. Manin. Some remarks on Koszul algebras and quantum groups , 1987 .
[16] Burkhard Wald,et al. Tame biserial algebras , 1985 .
[17] A. Skowroński,et al. Representation-finite biserial algebras. , 1983 .