Incremental sparse GP regression for continuous-time trajectory estimation and mapping

[1]  Frank Dellaert,et al.  Information-based reduced landmark SLAM , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Michael Kaess,et al.  Generic Node Removal for Factor-Graph SLAM , 2014, IEEE Transactions on Robotics.

[3]  Simo Särkkä,et al.  Batch Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression , 2014, Robotics: Science and Systems.

[4]  Wolfram Burgard,et al.  Nonlinear Graph Sparsification for SLAM , 2014, Robotics: Science and Systems.

[5]  Paul Timothy Furgale,et al.  Gaussian Process Gauss–Newton for non-parametric simultaneous localization and mapping , 2013, Int. J. Robotics Res..

[6]  Byron Boots,et al.  A Spectral Learning Approach to Range-Only SLAM , 2012, ICML.

[7]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping using the Bayes tree , 2012, Int. J. Robotics Res..

[8]  Ming-Hsuan Yang,et al.  Online Sparse Gaussian Process Regression and Its Applications , 2011, IEEE Transactions on Image Processing.

[9]  Frank Dellaert,et al.  The Bayes Tree: An Algorithmic Foundation for Probabilistic Robot Mapping , 2010, WAFR.

[10]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[11]  S. Ounpraseuth,et al.  Gaussian Processes for Machine Learning , 2008 .

[12]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[13]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[14]  Timothy A. Davis,et al.  Algorithm 836: COLAMD, a column approximate minimum degree ordering algorithm , 2004, TOMS.

[15]  Timothy A. Davis,et al.  Algorithm 837: AMD, an approximate minimum degree ordering algorithm , 2004, TOMS.

[16]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[17]  Eduardo Mario Nebot,et al.  Optimization of the simultaneous localization and map-building algorithm for real-time implementation , 2001, IEEE Trans. Robotics Autom..

[18]  B. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[19]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[20]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[21]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[22]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[23]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[24]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[25]  Joseph A. Djugash,et al.  Geolocation with Range: Robustness, Efficiency and Scalability , 2010 .

[26]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[27]  Hugh Durrant-Whyte,et al.  Simultaneous Localisation and Mapping ( SLAM ) : Part I The Essential Algorithms , 2006 .

[28]  H. Durrant-Whyte,et al.  Simultaneous Localisation and Mapping ( SLAM ) : Part II State of the Art , 2006 .

[29]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[30]  P. Heggernes,et al.  Finding Good Column Orderings for Sparse QR Factorization , 1996 .