Adaptive Filtering and Random Variables coefficient for Analyzing Functional Magnetic Resonance Imaging Data

Functional magnetic resonance imaging (fMRI) is used to study brain functional connectivity (FC) after filtering the physiological noise (PN). Herein, we employ: adaptive filtering for removing nonstationary PN; random variables (RV) coefficient for FC analysis. Comparisons with standard techniques were performed by quantifying PN filtering and FC in neural vs. non-neural regions. As a result, adaptive filtering plus RV coefficient showed a greater suppression of PN and higher connectivity in neural regions, representing a novel effective approach to analyze fMRI data.

[1]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[2]  D. Heeger,et al.  In this issue , 2002, Nature Reviews Drug Discovery.

[3]  Alfredo Vellido,et al.  Semi-Supervised Analysis of Human Brain Tumours from Partially Labeled MRS Information, Using Manifold Learning Models , 2011, Int. J. Neural Syst..

[4]  Nelson D. A. Mascarenhas,et al.  Spatio-temporal resolution enhancement of vocal tract MRI sequences based on image registration , 2011, Integr. Comput. Aided Eng..

[5]  Arkady Borisov,et al.  Ranking-Based Kernels in Applied Biomedical Diagnostics Using a Support Vector Machine , 2011, Int. J. Neural Syst..

[6]  Paul Honeine,et al.  Statistical hypothesis testing with time-frequency surrogates to check signal stationarity , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[7]  Aleksandar Neskovic,et al.  Artificial Neural Network Based Approach to EEG Signal Simulation , 2012, Int. J. Neural Syst..

[8]  Ning Zhang,et al.  Detection of Nonlinear Interactions of EEG alpha Waves in the Brain by a New Coherence Measure and its Application to Epilepsy and Anti-Epileptic Drug Therapy , 2011, Int. J. Neural Syst..

[9]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Ana Gabriela Gallardo-Hernández,et al.  A Discrete-Time Recurrent Neurofuzzy Network for Black-Box Modeling of insulin Dynamics in Diabetic Type-1 Patients , 2010, Int. J. Neural Syst..

[11]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[12]  J. Michael Herrmann,et al.  Recurrence-Based Estimation of Time-Distortion Functions for ERP Waveform Reconstruction , 2011, Int. J. Neural Syst..

[13]  Jérôme Pagès,et al.  Testing the significance of the RV coefficient , 2008, Comput. Stat. Data Anal..

[14]  U. Rajendra Acharya,et al.  Application of Recurrence Quantification Analysis for the Automated Identification of Epileptic EEG Signals , 2011, Int. J. Neural Syst..

[15]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[16]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[17]  Malek Adjouadi,et al.  A New Parametric Feature Descriptor for the Classification of Epileptic and Control EEG Records in Pediatric Population , 2012, Int. J. Neural Syst..

[18]  U. Rajendra Acharya,et al.  Automatic Identification of Epileptic and Background EEG Signals Using Frequency Domain Parameters , 2010, Int. J. Neural Syst..

[19]  Shlomo Havlin,et al.  Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis , 1996, Nature.

[20]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[21]  U. Rajendra Acharya,et al.  Application of Non-Linear and Wavelet Based Features for the Automated Identification of Epileptic EEG signals , 2012, Int. J. Neural Syst..

[22]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[23]  Irene Tracey,et al.  Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal , 2004, NeuroImage.

[24]  J. Haxby,et al.  Localization of Cardiac-Induced Signal Change in fMRI , 1999, NeuroImage.

[25]  R. Sabatier,et al.  Refined approximations to permutation tests for multivariate inference , 1995 .

[26]  Thomas E. Nichols,et al.  Non-white noise in fMRI: Does modelling have an impact? , 2006, NeuroImage.

[27]  P. Robert,et al.  A Unifying Tool for Linear Multivariate Statistical Methods: The RV‐Coefficient , 1976 .

[28]  T E Lund,et al.  fcMRI—Mapping functional connectivity or correlating cardiac‐induced noise? , 2001, Magnetic resonance in medicine.

[29]  M. Fukunaga,et al.  Negative BOLD-fMRI Signals in Large Cerebral Veins , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[30]  Edgar N. Sánchez,et al.  Blood glucose Level Neural Model for Type 1 Diabetes Mellitus Patients , 2011, Int. J. Neural Syst..

[31]  YANG YANG,et al.  Protein Subcellular Multi-Localization Prediction Using a Min-Max Modular Support Vector Machine , 2010, Int. J. Neural Syst..

[32]  U. Rajendra Acharya,et al.  Analysis and Automatic Identification of Sleep Stages Using Higher Order Spectra , 2010, Int. J. Neural Syst..

[33]  Jeff H. Duyn,et al.  Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal , 2007, NeuroImage.

[34]  Paul Honeine,et al.  Testing Stationarity With Surrogates: A Time-Frequency Approach , 2010, IEEE Transactions on Signal Processing.

[35]  R. Cattell The Scree Test For The Number Of Factors. , 1966, Multivariate behavioral research.

[36]  U. Rajendra Acharya,et al.  Automatic Detection of Epileptic EEG Signals Using Higher Order cumulant Features , 2011, Int. J. Neural Syst..

[37]  Catie Chang,et al.  Influence of heart rate on the BOLD signal: The cardiac response function , 2009, NeuroImage.

[38]  Alberto Landi,et al.  Artificial Neural Networks in the Outcome Prediction of Adjustable Gastric Banding in Obese Women , 2010, PloS one.

[39]  Peter A. Bandettini,et al.  Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI , 2006, NeuroImage.

[40]  Jürgen Kurths,et al.  Recurrence plots for the analysis of complex systems , 2009 .

[41]  J. Zbilut,et al.  Embeddings and delays as derived from quantification of recurrence plots , 1992 .

[42]  T. Schreiber,et al.  Surrogate time series , 1999, chao-dyn/9909037.