Atomic understanding of elastic-plastic deformation and crack evolution for single crystal AlN during nanoscratch

[1]  Jinhuan Xu,et al.  Effects of cracking on the deformation anisotropy of GaAs with different crystal orientations during scratching using molecular dynamics simulations , 2023, Tribology International.

[2]  B. Meng,et al.  Thermal effects on removal mechanism of monocrystal SiC during micro-laser assisted nanogrinding process , 2023, Ceramics International.

[3]  R. Kang,et al.  Molecular simulation of the plastic deformation and crack formation in single grit grinding of 4H-SiC single crystal , 2023, International Journal of Mechanical Sciences.

[4]  Fei-hu Zhang,et al.  Understand anisotropy dependence of damage evolution and material removal during nanoscratch of MgF2 single crystals , 2022, International Journal of Extreme Manufacturing.

[5]  Yanbing Chen,et al.  A review of molecular dynamics simulation in studying surface generation mechanism in ultra-precision cutting , 2022, The International Journal of Advanced Manufacturing Technology.

[6]  H. Hou,et al.  Dislocation motion in plastic deformation of nano polycrystalline metal materials: a phase field crystal method study , 2022, Advanced Composites and Hybrid Materials.

[7]  R. Kang,et al.  Mechanical Load-Induced Atomic-Scale Deformation Evolution and Mechanism of SiC Polytypes Using Molecular Dynamics Simulation , 2022, Nanomaterials.

[8]  R. Kang,et al.  Grinding and Lapping Induced Surface Integrity of Silicon Wafers and its Effect on Chemical Mechanical Polishing , 2022, SSRN Electronic Journal.

[9]  Min Lai,et al.  Molecular dynamics study on surface formation and phase transformation in nanometric cutting of β-Sn , 2022, Advances in Manufacturing.

[10]  Junfeng Cui,et al.  Origin and evolution of a crack in silicon induced by a single grain grinding , 2022, Journal of Manufacturing Processes.

[11]  Jian Guo,et al.  Atomistic understanding of scratching-induced material attrition of wurtzite single-crystal AlN using nanoscale diamond abrasive , 2022, Tribology International.

[12]  Z. Wan,et al.  Investigation of AlN ceramic anisotropic deformation behavior during scratching , 2022, Journal of the European Ceramic Society.

[13]  N. Novikova,et al.  An insight into growth transition in AlN epitaxial films produced by metal-organic chemical vapour deposition at different growth temperatures , 2021, Superlattices and Microstructures.

[14]  Chen Li,et al.  Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals , 2021, International Journal of Machine Tools and Manufacture.

[15]  Junjie Zhang,et al.  Effect of tool rake angle on the material removal mechanism transition of single-crystal silicon: a molecular dynamics study , 2021, The International Journal of Advanced Manufacturing Technology.

[16]  T. Sun,et al.  Atomistic origin of brittle-to-ductile transition behavior of polycrystalline 3C–SiC in diamond cutting , 2021 .

[17]  F. Jiang,et al.  Deformation anisotropy of nano-scratching on C-plane of sapphire: A molecular dynamics study and experiment , 2021 .

[18]  R. Sumathi Review—Status and Challenges in Hetero-epitaxial Growth Approach for Large Diameter AlN Single Crystalline Substrates , 2021 .

[19]  F. Fang,et al.  Study on the crack formation mechanism in nano-cutting of gallium arsenide , 2021 .

[20]  H. Urbassek,et al.  Atomistic simulation of amorphization during AlN nanoindentation , 2021 .

[21]  Liangchi Zhang,et al.  Structural anisotropy effect on the nanoscratching of monocrystalline 6H-silicon carbide , 2021, Wear.

[22]  Xun Chen,et al.  Molecular dynamics simulation of the material removal in the scratching of 4H-SiC and 6H-SiC substrates , 2020, International Journal of Extreme Manufacturing.

[23]  R. Cook,et al.  Critique of materials‐based models of ductile machining in brittle solids , 2020, Journal of the American Ceramic Society.

[24]  Xiang Gao,et al.  Numerical and experimental investigation on ductile deformation and subsurface defects of monocrystalline silicon during nano-scratching , 2020 .

[25]  Fengzhou Fang,et al.  Study on nano-cutting of brittle material by molecular dynamics using dynamic modeling , 2020 .

[26]  F. Fang,et al.  A numerical study on nanometric cutting mechanism of lutetium oxide single crystal , 2019 .

[27]  Rui Li,et al.  Influence of crystal anisotropy on deformation behaviors in nanoscratching of AlN , 2019, Applied Surface Science.

[28]  Hongwei Zhao,et al.  A study of deformation behavior and phase transformation in 4H-SiC during nanoindentation process via molecular dynamics simulation , 2019, Ceramics International.

[29]  Y. Ohno,et al.  Insight into physical processes controlling the mechanical properties of the wurtzite group-III nitride family , 2018, Journal of Crystal Growth.

[30]  Xianghe Peng,et al.  Molecular dynamics simulation for orientation dependence of deformations in monocrystalline AlN during nanoindentation , 2018, Ceramics International.

[31]  Xianghe Peng,et al.  Comparison of different interatomic potentials for MD simulations of AlN , 2017 .

[32]  Xianghe Peng,et al.  Formation of prismatic loops in AlN and GaN under nanoindentation , 2017 .

[33]  Liangchi Zhang,et al.  Revealing the deformation mechanisms of 6H-silicon carbide under nano-cutting , 2017 .

[34]  Xianghe Peng,et al.  Molecular dynamics simulation of AlN thin films under nanoindentation , 2017 .

[35]  H. Ye,et al.  dislocations and their interactions with other crystal defects in a Mg alloy , 2017 .

[36]  G. Yoon,et al.  Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading , 2016 .

[37]  Kamal Choudhary,et al.  Dynamical properties of AlN nanostructures and heterogeneous interfaces predicted using COMB potentials , 2016 .

[38]  A. Hirata,et al.  Sample size induced brittle-to-ductile transition of single-crystal aluminum nitride , 2015 .

[39]  J. El-Awady,et al.  Highly anisotropic slip-behavior of pyramidal I 〈c+a〉 dislocations in hexagonal close-packed magnesium , 2014 .

[40]  Bernhard Tittmann,et al.  Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[41]  Yunfeng Shi,et al.  A Tersoff‐based interatomic potential for wurtzite AlN , 2011 .

[42]  S. Phillpot,et al.  Grain-boundary activated pyramidal dislocations in nano-textured Mg by molecular dynamics simulation , 2011 .

[43]  A. Nakano,et al.  Interaction potential for aluminum nitride: A molecular dynamics study of mechanical and thermal properties of crystalline and amorphous aluminum nitride , 2011 .

[44]  X. Zu,et al.  First-principles calculations of pressure-induced phase transformation in AlN and GaN , 2010 .

[45]  Michelle A. Moram,et al.  X-ray diffraction of III-nitrides , 2009 .

[46]  Alberto Carnicero López,et al.  Surface effects in atomistic mechanical simulations of Al nanocrystals , 2009 .

[47]  P. Komninou,et al.  Interatomic potential calculations of III(Al, In)–N planar defects with a III‐species environment approach , 2008 .

[48]  Hong-Tsu Young,et al.  Surface integrity of silicon wafers in ultra precision machining , 2006 .

[49]  M. Shur,et al.  Surface acoustic wave velocity in single-crystal AlN substrates , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[50]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[51]  R. Scattergood,et al.  Ductile-Regime Grinding: A New Technology for Machining Brittle Materials , 1991 .

[52]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[53]  Jiaoxian Yu,et al.  Two-dimensional wide band-gap nitride semiconductor GaN and AlN materials:properties, fabrication and applications , 2021, Journal of Materials Chemistry C.

[54]  S. To,et al.  Molecular dynamics modelling of brittle–ductile cutting mode transition: Case study on silicon carbide , 2015 .

[55]  Renke Kang,et al.  Edge chipping of silicon wafers in diamond grinding , 2013 .