Optimal equi-difference conflict-avoiding codes of weight four

A conflict-avoiding code (CAC) of length $$n$$n and weight $$w$$w is defined as a family $${\mathcal C}$$C of $$w$$w-subsets (called codewords) of $${\mathbb {Z}}_n$$Zn, the ring of residues modulo $$n$$n, such that $$\Delta (C) \cap \Delta (C') = \emptyset $$Δ(C)∩Δ(C′)=∅ for any $$C, C' \in {\mathcal C}$$C,C′∈C, where $$\Delta (C) = \{ j-i \pmod {n} : i, j \in C, i \ne j\}$$Δ(C)={j-i(modn):i,j∈C,i≠j}. A code $${\mathcal C}$$C in CACs of length $$n$$n and weight $$w$$w is called an equi-difference code if every codeword $$C \in {\mathcal C}$$C∈C has the form $$\{ 0, i, 2i, \ldots , (w-1) i \}$${0,i,2i,…,(w-1)i}. A code $${\mathcal C}$$C in CACs of length $$n$$n and weight $$w$$w is said to be optimal if $${\mathcal C}$$C has the maximum number of codewords. In this article, we investigate sizes and constructions of optimal codes in equi-difference CACs of weight four by using properly defined directed graphs. As a consequence, several series of infinite number of optimal equi-difference CACs are also provided.

[1]  Hung-Lin Fu,et al.  Optimal Conflict-Avoiding Codes of Even Length and Weight 3 , 2010, IEEE Transactions on Information Theory.

[2]  Yiling Lin,et al.  Optimal equi-difference conflict-avoiding codes of odd length and weight three , 2014, Finite Fields Their Appl..

[3]  Hung-Lin Fu,et al.  Optimal Conflict-Avoiding Codes of Even Length and Weight 3 , 2010, IEEE Transactions on Information Theory.

[4]  Hung-Lin Fu,et al.  Weighted maximum matchings and optimal equi-difference conflict-avoiding codes , 2015, Des. Codes Cryptogr..

[5]  Wenping Ma,et al.  New optimal constructions of conflict-avoiding codes of odd length and weight 3 , 2014, Des. Codes Cryptogr..

[6]  Hung-Lin Fu,et al.  Optimal Tight Equi‐Difference Conflict‐Avoiding Codes of Length n = 2k ± 1 and Weight 3 , 2013 .

[7]  Vladimir D. Tonchev,et al.  Optimal conflict-avoiding codes for three active users , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[8]  Vladimir D. Tonchev,et al.  On Conflict-Avoiding Codes of Length $n=4m$ for Three Active Users , 2007, IEEE Transactions on Information Theory.

[9]  Akihiro Munemasa On perfectt-shift codes in abelian groups , 1995, Des. Codes Cryptogr..

[10]  Koji Momihara,et al.  Necessary and sufficient conditions for tight equi-difference conflict-avoiding codes of weight three , 2007, Des. Codes Cryptogr..

[11]  Hung-Lin Fu,et al.  Optimal conflict-avoiding codes of length n ≡ 0 (mod 16) and weight 3 , 2009, Des. Codes Cryptogr..

[12]  Kenneth W. Shum,et al.  A General Upper Bound on the Size of Constant-Weight Conflict-Avoiding Codes , 2010, IEEE Transactions on Information Theory.

[13]  A. J. Han Vinck,et al.  Perfect (d, k)-codes capable of correcting single peak-shifts , 1993, IEEE Trans. Inf. Theory.

[14]  Kenneth W. Shum,et al.  Optimal conflict-avoiding codes of odd length and weight three , 2014, Des. Codes Cryptogr..

[15]  Meinard Müller,et al.  Constant Weight Conflict-Avoiding Codes , 2007, SIAM J. Discret. Math..