Integration of vertical COM motion and angular momentum in an extended Capture Point tracking controller for bipedal walking

In this paper, we demonstrate methods for bipedal walking control based on the Capture Point (CP) methodology. In particular, we introduce a method to intuitively derive a CP reference trajectory from the next three steps and extend the linear inverted pendulum (LIP) based CP tracking controller introduced in [1], generalizing it to a model that contains vertical CoM motions and changes in angular momentum. Respecting the dynamics of general multibody systems, we propose a measurement-based compensation of multi-body effects, which leads to a stable closed-loop dynamics of bipedal walking robots. In addition we propose a ZMP projection method, which prevents the robots feet from tilting and ensures the best feasible CP tracking. The extended CP controller's performance is validated in OpenHRP3 [2] simulations and compared to the controller proposed in [1].

[1]  Takashi Matsumoto,et al.  Real time motion generation and control for biped robot -3rd report: Dynamics error compensation- , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Mojtaba Ahmadi,et al.  A walking stability controller with disturbance rejection based on CMP criterion and Ground Reaction Force feedback , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Kazuhito Yokoi,et al.  Open architecture humanoid robotics platform , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[4]  Takashi Matsumoto,et al.  Real time motion generation and control for biped robot -2nd report: Running gait pattern generation- , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  M A Townsend,et al.  Biped gait stabilization via foot placement. , 1985, Journal of biomechanics.

[6]  Friedrich Pfeiffer,et al.  A collocation method for real-time walking pattern generation , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[7]  Kazuhito Yokoi,et al.  Biped walking stabilization based on linear inverted pendulum tracking , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  Shuuji Kajita,et al.  ZMP-based Biped Running Enhanced by Toe Springs , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[10]  Youngjin Choi,et al.  Posture/Walking Control for Humanoid Robot Based on Kinematic Resolution of CoM Jacobian With Embedded Motion , 2007, IEEE Transactions on Robotics.

[11]  M S Redfern,et al.  A model of foot placement during gait. , 1994, Journal of biomechanics.

[12]  Christopher G. Atkeson,et al.  Push Recovery by stepping for humanoid robots with force controlled joints , 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots.

[13]  Ryosuke Tajima,et al.  Fast running experiments involving a humanoid robot , 2009, 2009 IEEE International Conference on Robotics and Automation.

[14]  Yoshihiko Nakamura,et al.  Boundary Condition Relaxation Method for Stepwise Pedipulation Planning of Biped Robots , 2009, IEEE Transactions on Robotics.

[15]  Sergey V. Drakunov,et al.  Capture Point: A Step toward Humanoid Push Recovery , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[16]  Twan Koolen,et al.  Capturability-based analysis and control of legged locomotion, Part 1: Theory and application to three simple gait models , 2011, Int. J. Robotics Res..

[17]  Pierre-Brice Wieber,et al.  Online walking gait generation with adaptive foot positioning through Linear Model Predictive control , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Takashi Matsumoto,et al.  Real time motion generation and control for biped robot -1st report: Walking gait pattern generation- , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Gerd Hirzinger,et al.  Posture and balance control for biped robots based on contact force optimization , 2011, 2011 11th IEEE-RAS International Conference on Humanoid Robots.

[20]  Pierre-Brice Wieber,et al.  Trajectory Free Linear Model Predictive Control for Stable Walking in the Presence of Strong Perturbations , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[21]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[22]  Twan Koolen,et al.  Capturability-based analysis and control of legged locomotion, Part 2: Application to M2V2, a lower-body humanoid , 2012, Int. J. Robotics Res..

[23]  M. Vukobratovic,et al.  On the stability of anthropomorphic systems , 1972 .

[24]  Louis L. Whitcomb,et al.  Adaptive force control of position/velocity controlled robots: theory and experiment , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[25]  Kazuhito Yokoi,et al.  The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[26]  A. Hof The 'extrapolated center of mass' concept suggests a simple control of balance in walking. , 2008, Human movement science.

[27]  Alin Albu-Schäffer,et al.  Bipedal walking control based on Capture Point dynamics , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.