Properties of PEG, PPG and Their Copolymers: Influence on Copper Filling of Damascene Interconnects

[1]  Andrew A. Gewirth,et al.  Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: A surface-enhanced Raman study , 2003 .

[2]  Alan C. West,et al.  Copper Deposition in the Presence of Polyethylene Glycol I. Quartz Crystal Microbalance Study , 1998 .

[3]  Soo‐Kil Kim,et al.  Superfilling Evolution in Cu Electrodeposition Dependence on the Aging Time of the Accelerator , 2004 .

[4]  Shaojie Hu,et al.  Investigation of Bis-(3-sodiumsulfopropyl disulfide) (SPS) Decomposition in a Copper-Electroplating Bath Using Mass Spectroscopy , 2008 .

[5]  R. Akolkar,et al.  Electrochemical materials and processes in Si integrated circuit technology , 2007 .

[6]  Mark J. Willey,et al.  Microfluidic Studies of Adsorption and Desorption of Polyethylene Glycol during Copper Electrodeposition , 2006 .

[7]  Alan C. West,et al.  PEG, PPG, and Their Triblock Copolymers as Suppressors in Copper Electroplating , 2008 .

[8]  T. Moffat,et al.  Superconformal Electrodeposition of Copper , 2001 .

[9]  K. Dunn,et al.  Development of Electrochemical Copper Deposition Screening Methodologies for Next Generation Additive Selection , 2012 .

[10]  Thomas P. Moffat,et al.  Modeling Superconformal Electrodeposition Using The Level Set Method , 2003 .

[11]  T. Moffat,et al.  An Exact Algebraic Solution for the Incubation Period of Superfill , 2004 .

[12]  Panayotis C. Andricacos,et al.  Damascene copper electroplating for chip interconnections , 1998, IBM J. Res. Dev..

[13]  Wen-Hsi Lee,et al.  Competitive Adsorption Between Bis(3-sodiumsulfopropyl disulfide) and Polyalkylene Glycols on Copper Electroplating , 2008 .

[14]  Alan C. West,et al.  A Superfilling Model that Predicts Bump Formation , 2001 .

[15]  Uziel Landau,et al.  A Time-Dependent Transport-Kinetics Model for Additive Interactions in Copper Interconnect Metallization , 2004 .

[16]  G. T. Rogers,et al.  Polyethylene glycol in copper electrodeposition onto a rotating disk electrode , 1978 .

[17]  C. Wan,et al.  Effect of the molecular weight of polyethylene glycol as single additive in copper deposition for interconnect metallization , 2008 .

[18]  J. Dukovic Computation of current distribution in electrodeposition, a review , 1990 .

[19]  Mark J. Willey,et al.  Copper Filling of 100 nm Trenches Using PEG, PPG, and a Triblock Copolymer as Plating Suppressors , 2009 .

[20]  Thomas P. Moffat,et al.  Curvature enhanced adsorbate coverage mechanism for bottom-up superfilling and bump control in damascene processing , 2007 .

[21]  R. J. Green,et al.  Adsorption of PEO-PPO-PEO triblock copolymers at the solid/liquid interface : A surface plasmon resonance study , 1997 .

[22]  P. Searson,et al.  Electrochemical Characterization of Adsorption-Desorption of the Cuprous-Suppressor-Chloride Complex during Electrodeposition of Copper , 2006 .

[23]  Mark J. Willey,et al.  SPS Adsorption and Desorption during Copper Electrodeposition and Its Impact on PEG Adsorption , 2007 .

[24]  Daniel Wheeler,et al.  Superconformal film growth: Mechanism and quantification , 2005, IBM J. Res. Dev..

[25]  T. Moffat,et al.  Accelerator Surface Phase Associated with Superconformal Cu Electrodeposition , 2010 .

[26]  Marius Purcar,et al.  Simulation and experimental determination of the macro-scale layer thickness distribution of electrodeposited Cu-line patterns on a wafer substrate , 2005 .

[27]  J. Harb,et al.  Additive Behavior during Copper Electrodeposition in Solutions Containing Cl − , PEG, and SPS , 2003 .

[28]  T. Moffat,et al.  Accelerator aging effects during copper electrodeposition , 2003 .

[29]  Mark J. Willey,et al.  Adsorption and Desorption Kinetics of a Block Copolymer Wetting Agent Used in Copper Electroplating , 2009 .

[30]  Panayotis C. Andricacos,et al.  The chemistry of additives in damascene copper plating , 2005, IBM J. Res. Dev..

[31]  Derek Pletcher,et al.  The chemistry of the additives in an acid copper electroplating bath: Part I. Polyethylene glycol and chloride ion , 1992 .

[32]  Suppressor Effects during Copper Superfilling of Sub- 100 nm Lines , 2009 .

[33]  A. West,et al.  Three-Additive Model of Superfilling of Copper , 2001 .

[34]  P. Stroeve,et al.  Adsorption and Desorption of PEO−PPO−PEO Triblock Copolymers on a Self-Assembled Hydrophobic Surface , 2003 .

[35]  T. Moffat,et al.  Electrodeposition of Copper in the SPS-PEG-Cl Additive System I. Kinetic Measurements: Influence of SPS , 2004 .

[36]  G. Buckton,et al.  The Effect of Temperature on the Surface Nature of an Adsorbed Layer of Poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) Block Copolymers , 1996, Pharmaceutical Research.

[37]  J. Reid,et al.  Effects of polyethylene glycol on the electrochemical characteristics of copper cathodes in an acid copper medium , 1987 .

[38]  Mark J. Willey,et al.  Acceleration Kinetics of PEG, PPG, and a Triblock Copolymer by SPS during Copper Electroplating , 2009 .

[39]  J. Newman Current Distribution on a Rotating Disk below the Limiting Current , 1966 .

[40]  Thomas P. Moffat,et al.  Cationic Surfactants for the Control of Overfill Bumps in Cu Superfilling , 2006 .

[41]  C. Tsvetanov,et al.  Behaviour of poly(ethylene glycol) during electrodeposition of bright copper coatings in sulfuric acid electrolytes , 1996 .

[42]  R. Akolkar,et al.  Pattern Density Effect on the Bottom-Up Fill during Damascene Copper Electrodeposition Analysis of the Suppressor Concentration Field Effect , 2007 .

[43]  Wei-Ping Dow,et al.  Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling by Copper Electroplating , 2005 .

[44]  U. Landau,et al.  Polyether Suppressors Enabling Copper Metallization of High Aspect Ratio Interconnects , 2009 .