Contrôle sensori-moteur en situation de téléopération : données théoriques et perspectives ergonomiques

Les avancees technologiques dans le domaine de la communication rendent possible l’utilisation d’outils permettant le controle d’operations a distance. Ces situations amenent l’individu a s’immerger dans des environnements comportant des proprietes spatiales inhabituelles. En situation de teleoperation par exemple, la manipulation d’objets s’effectue avec un controle indirect de l’action par le biais d’informations visuelles projetees sur un ecran video. La position decentree de cet ecran induit une baisse de congruence entre les differentes informations sensorielles impliquees dans le controle de l’action, ce qui constitue d’un point de vue ergonomique une contrainte importante. L’objectif de cet article, organise en trois parties, est de proposer une synthese des recherches effectuees dans ce domaine. Il vise dans un premier temps a evaluer les consequences des contraintes associees aux situations de teleoperation sur la perception de l’espace et le controle visuo-moteur. Une seconde partie aborde la question de la participation des informations sensorielles au controle de l’action en situation naturelle, ceci afin de mieux apprehender, en situation de teleoperation, les consequences comportementales pouvant resulter d’une absence de congruence entre les differents systemes sensoriels. Une derniere partie est consacree aux capacites d’adaptation et de transfert d’apprentissage lorsque le controle du mouvement a distance est perturbe par une modification d’orientation ou un changement d’echelle des informations spatiales. La conclusion, en suggerant quelques principes ergonomiques devant favoriser l’adaptation de l’individu au controle du mouvement a distance, souligne en quoi la situation de teleoperation constitue un nouveau champ de recherche dont les perspectives, encore non clairement evaluees, devraient permettre de mieux cerner les potentialites et les limites de la plasticite du systeme sensori-moteur.

[1]  M. Goodale,et al.  Visual control of reaching movements without vision of the limb , 1986, Experimental Brain Research.

[2]  M. Jeannerod,et al.  Limited conscious monitoring of motor performance in normal subjects , 1998, Neuropsychologia.

[3]  C. C. A. M. Gielen,et al.  Interactions between self-motion and depth perception in the processing of optic flow , 1996, Trends in Neurosciences.

[4]  M. Jeannerod,et al.  Temporal dissociation of motor responses and subjective awareness. A study in normal subjects. , 1991, Brain : a journal of neurology.

[5]  Albert Postma,et al.  Egocentric and Exocentric Spatial Judgements of Visual Displacement , 1999 .

[6]  John M. Foley,et al.  Visually directed pointing as a function of target distance, direction, and available cues , 1972 .

[7]  Yann Coello,et al.  Determination of target distance in a structured environment: Selection of visual information for action , 2000 .

[8]  G. Buess,et al.  Robotics and systems technology for advanced endoscopic procedures: experiences in general surgery. , 1999, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[9]  P. Viviani,et al.  Frames of reference and control parameters in visuomanual pointing. , 1998, Journal of experimental psychology. Human perception and performance.

[10]  J. Wann,et al.  Does limb proprioception drift? , 2004, Experimental Brain Research.

[11]  G. Buess,et al.  Robotics and telemanipulation technologies for endoscopic surgery , 2000, Surgical Endoscopy.

[12]  James R. Tresilian,et al.  Increasing confidence in vergence as a cue to distance , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[13]  C Ghez,et al.  Learning of scaling factors and reference axes for reaching movements. , 1996, Neuroreport.

[14]  H. Cunningham Aiming error under transformed spatial mappings suggests a structure for visual-motor maps. , 1989, Journal of experimental psychology. Human perception and performance.

[15]  R B Welch,et al.  Multiple concurrent visual-motor mappings: implications for models of adaptation. , 1994, Journal of experimental psychology. Human perception and performance.

[16]  Otmar Bock,et al.  Adaptation of aimed arm movements to sensorimotor discordance: evidence for direction-independent gain control , 1992, Behavioural Brain Research.

[17]  D. Rosenbaum Human movement initiation: specification of arm, direction, and extent. , 1980, Journal of experimental psychology. General.

[18]  G. M. Redding,et al.  Adaptive spatial alignment and strategic perceptual-motor control. , 1996, Journal of experimental psychology. Human perception and performance.

[19]  C. Bard,et al.  Reference systems for coding spatial information in normal subjects and a deafferented patient , 2004, Experimental Brain Research.

[20]  Y. Rossetti,et al.  The timing of color and location processing in the motor context , 1998, Experimental Brain Research.

[21]  M. Jeannerod,et al.  Selective perturbation of visual input during prehension movements , 1991, Experimental Brain Research.

[22]  Y. Coello,et al.  Pointing movement visually controlled through a video display: adaptation to scale change , 2000, Ergonomics.

[23]  C. Prablanc,et al.  Pointing movement in an artificial perturbing inertial field: A prospective paradigm for motor control study , 1996, Neuropsychologia.

[24]  C. Prablanc,et al.  Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement , 1986, Nature.

[25]  B. Hannaford,et al.  Force-feedback grasper helps restore sense of touch in minimally invasive surgery , 1999, Journal of Gastrointestinal Surgery.

[26]  P. Fitts The information capacity of the human motor system in controlling the amplitude of movement. , 1954, Journal of experimental psychology.

[27]  Michel Desmurget,et al.  The effect of viewing the static hand prior to movement onset on pointing kinematics and variability , 1994, Experimental Brain Research.

[28]  James Gordon,et al.  Accuracy of planar reaching movements , 1994, Experimental Brain Research.

[29]  H. Imamizu,et al.  The locus of visual-motor learning at the task or manipulator level: implications from intermanual transfer. , 1995, Journal of experimental psychology. Human perception and performance.

[30]  M. Kawato,et al.  Internal representations of the motor apparatus: implications from generalization in visuomotor learning. , 1995, Journal of experimental psychology. Human perception and performance.

[31]  Y. Coello,et al.  Effect of Size and Frame of Visual Field on the Accuracy of an Aiming Movement , 1997, Perception.

[32]  Martin Burghoff,et al.  Visuo-motor adaptation: evidence for a distributed amplitude control system , 1997, Behavioural Brain Research.

[33]  C. Bard,et al.  Contribution of proprioception for calibrating and updating the motor space. , 1995, Canadian journal of physiology and pharmacology.

[34]  D. Pélisson,et al.  From Eye to Hand: Planning Goal-directed Movements , 1998, Neuroscience & Biobehavioral Reviews.

[35]  Blake Hannaford,et al.  Quantitative Evaluation of Perspective and Stereoscopic Displays in Three-Axis Manual Tracking Tasks , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[36]  Rainer K. Bernotat,et al.  Rotation of Visual Reference Systems and Its Influence on Control Quality , 1970 .

[37]  M. Jeannerod,et al.  Representation of hand position prior to movement and motor variability. , 1995, Canadian journal of physiology and pharmacology.