Infrared fluorescence, energy transfer process and quantitative analysis of thulium-doped niobium silicate-germanate glass

[1]  Xiaokang Fan,et al.  High-efficiency ~2 μm laser in a single-mode Tm-doped lead germanate composite fiber , 2016 .

[2]  B. Man,et al.  Compact Q-switched 2 μm Tm:GdVO 4 laser with MoS 2 absorber , 2015 .

[3]  Lili Hu,et al.  Er3+-doped fluorogallate glass for mid-infrared applications , 2015 .

[4]  Yongge Cao,et al.  Fabrication and properties of tape-casting transparent Ho:Y 3 Al 5 O 12 ceramic , 2015 .

[5]  G. Xie,et al.  Passive Q-switching and Q-switched mode-locking operations of 2 μm Tm:CLNGG laser with MoS 2 saturable absorber mirror , 2015 .

[6]  Lihui Huang,et al.  Enhancement of the upconversion luminescence in Y 2 O 3 :Er 3+ powders by codoping with La 3+ ions , 2015 .

[7]  Junjie Zhang,et al.  Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass , 2015 .

[8]  Q. Zhang,et al.  An efficient 1.8 μm emission in Tm3 + and Yb3 +/Tm3 + doped fluoride modified germanate glasses for a diode-pump mid-infrared laser , 2014 .

[9]  M. Gulsoy,et al.  Investigating the ablation efficiency of a 1940-nm thulium fibre laser for intraoral surgery. , 2014, International journal of oral and maxillofacial surgery.

[10]  Lili Hu,et al.  ~2µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass , 2014 .

[11]  Lili Hu,et al.  Effect of Tm2O3 concentration and hydroxyl content on the emission properties of Tm doped silicate glasses , 2014 .

[12]  Lili Hu,et al.  Spectroscopic properties of thulium ions in bismuth silicate glass , 2012 .

[13]  Lili Hu,et al.  Investigation on Tm3+-doped silicate glass for 1.8 μm emission , 2012 .

[14]  Ying Tian,et al.  2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation , 2012 .

[15]  Christelle Kieleck,et al.  High-power actively mode-locked sub-nanosecond Tm³⁺-doped silica fiber laser. , 2011, Optics letters.

[16]  Lili Hu,et al.  Structural origin and energy transfer processes of 1.8 μm emission in Tm3+ doped germanate glasses. , 2011, The journal of physical chemistry. A.

[17]  Ying Tian,et al.  Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass. , 2011, Optics letters.

[18]  Mingjian Wang,et al.  Spectroscopic properties of 1.8 μm emission of thulium ions in germanate glass , 2011 .

[19]  Guang Zhang,et al.  Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber. , 2010, Optics letters.

[20]  Lili Hu,et al.  1.8 μm emission of highly thulium doped fluorophosphate glasses , 2010 .

[21]  Shibin Jiang,et al.  Single-mode low-loss optical fibers for long-wave infrared transmission. , 2010, Optics letters.

[22]  Animesh Jha,et al.  Femtosecond mode-locked Tm(3+) and Tm(3+)-Ho(3+) doped 2 μm glass lasers. , 2010, Optics express.

[23]  Lili Hu,et al.  Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses , 2010 .

[24]  Animesh Jha,et al.  Tellurite glass lasers operating close to 2 μm , 2010 .

[25]  Guorong Chen,et al.  Infrared luminescence of Tm3+/Yb3+ codoped lanthanum aluminum germanate glasses , 2010 .

[26]  Guorong Chen,et al.  Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germanate glasses with efficient energy transfer , 2009 .

[27]  Edwin Yue-Bun Pun,et al.  Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses , 2009 .

[28]  F. Pellé,et al.  Synthesis and infrared spectroscopic properties of Tm3+-doped phosphate glasses , 2009 .

[29]  Qianhuan Zhang,et al.  Spectroscopic properties of GeO2- and Nb2O5-modified tellurite glasses doped with Er3+ , 2008 .

[30]  Shibin Jiang,et al.  Tm:germanate fiber laser: tuning and Q-switching , 2007 .

[31]  Zhidong Yao,et al.  Highly efficient high-power thulium-doped germanate glass fiber laser. , 2007, Optics letters.

[32]  Norman P. Barnes,et al.  Optical properties of Tm3+ ions in alkali germanate glass , 2006 .

[33]  Meisong Liao,et al.  Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphate glasses , 2006 .

[34]  N. Peyghambarian,et al.  Efficient thulium-doped 2-/spl mu/m germanate fiber laser , 2006, IEEE Photonics Technology Letters.

[35]  R. Balda,et al.  Optical spectroscopy of Tm3+ ions in GeO2–PbO–Nb2O5 glasses , 2005 .

[36]  Zhongmin Yang,et al.  Thermal analysis and optical properties of Yb 3+ /Er 3+ -codoped oxyfluoride germanate glasses , 2004 .

[37]  Norman P. Barnes,et al.  Comparison of Tm : ZBLAN and Tm : silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 μm , 2004 .

[38]  L. Nunes,et al.  Microscopic and macroscopic parameters of energy transfer between 'Tm POT.3+' ions in fluoroindogallate glasses , 2002 .

[39]  I. Ranieri,et al.  Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals , 1997 .

[40]  Hisayoshi Toratani,et al.  Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+Ho3+ doubly-doped glasses , 1996 .

[41]  J. Shelby,et al.  Calcium gallioaluminate glasses , 1990 .

[42]  Ranjan Sharma,et al.  Nonstoichiometry in Acceptor‐Doped BaTiO3 , 1982 .

[43]  D. L. Dexter,et al.  Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids , 1970 .

[44]  K. Rajnak,et al.  Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ , 1968 .

[45]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[46]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[47]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .