Realistic modeling of neurons and networks: towards brain simulation.

Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field.

[1]  Henry Markram,et al.  Seven challenges for neuroscience. , 2013, Functional neurology.

[2]  Thierry Nieus,et al.  A Realistic Large-Scale Model of the Cerebellum Granular Layer Predicts Circuit Spatio-Temporal Filtering Properties , 2009, Front. Cell. Neurosci..

[3]  V Taglietti,et al.  Theta-Frequency Bursting and Resonance in Cerebellar Granule Cells: Experimental Evidence and Modeling of a Slow K+-Dependent Mechanism , 2001, The Journal of Neuroscience.

[4]  E. Kandel,et al.  Neuroscience thinks big (and collaboratively) , 2013, Nature Reviews Neuroscience.

[5]  Masao Ito Movement and thought: identical control mechanisms by the cerebellum , 1993, Trends in Neurosciences.

[6]  J. Albus A Theory of Cerebellar Function , 1971 .

[7]  Alison Abbott Brain-simulation and graphene projects win billion-euro competition , 2013, Nature.

[8]  Javier F. Medina,et al.  Computer simulation of cerebellar information processing , 2000, Nature Neuroscience.

[9]  Julien Cohen-Adad,et al.  The Human Connectome Project and beyond: Initial applications of 300mT/m gradients , 2013, NeuroImage.

[10]  P. Flourens Recherches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébrés , 1842 .

[11]  R. Miall,et al.  The Cerebellum and the Timing of Coordinated Eye and Hand Tracking , 2002, Brain and Cognition.

[12]  Thierry Nieus,et al.  LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. , 2006, Journal of neurophysiology.

[13]  R. Ivry,et al.  The coordination of movement: optimal feedback control and beyond , 2010, Trends in Cognitive Sciences.

[14]  J. Bower,et al.  Is the cerebellum sensory for motor's sake, or motor for sensory's sake: the view from the whiskers of a rat? , 1997, Progress in brain research.

[15]  C. Stevens,et al.  Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma , 1971, The Journal of physiology.

[16]  J. Bower,et al.  An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. , 1994, Journal of neurophysiology.

[17]  D. McCormick,et al.  Periodicity of Thalamic Synchronized Oscillations: the Role of Ca2+-Mediated Upregulation of Ih , 1998, Neuron.

[18]  E. De Schutter,et al.  Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. , 1998, Journal of neurophysiology.

[19]  G. Buzsáki Rhythms of the brain , 2006 .

[20]  Erik De Schutter,et al.  Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells , 2010, Journal of Computational Neuroscience.

[21]  D M Wolpert,et al.  Predicting the Consequences of Our Own Actions: The Role of Sensorimotor Context Estimation , 1998, The Journal of Neuroscience.

[22]  Paul S. Weiss,et al.  The Brain Activity Map , 2013, Science.

[23]  Brain activity. , 2014, Nature nanotechnology.

[24]  R. Shadmehr,et al.  Biological Learning and Control: How the Brain Builds Representations, Predicts Events, and Makes Decisions , 2012 .

[25]  Egidio D'Angelo,et al.  Computational Reconstruction of Pacemaking and Intrinsic Electroresponsiveness in Cerebellar Golgi Cells , 2007, Frontiers in cellular neuroscience.

[26]  Egidio D'Angelo,et al.  Long‐term inactivation particle for voltage‐gated sodium channels , 2010, The Journal of physiology.

[27]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[28]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[29]  Egidio D'Angelo,et al.  Rebuilding Cerebellar Network Computations from Cellular Neurophysiology , 2010, Front. Cell. Neurosci..

[30]  D. Wolpert,et al.  Internal models in the cerebellum , 1998, Trends in Cognitive Sciences.

[31]  Richard B Ivry,et al.  Evaluating the role of the cerebellum in temporal processing: beware of the null hypothesis. , 2004, Brain : a journal of neurology.

[32]  Giovanni Naldi,et al.  Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. , 2009, Journal of neurophysiology.

[33]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[34]  Michele Migliore,et al.  A model for long-term potentiation and depression , 1995, Journal of Computational Neuroscience.

[35]  Enrico Macii,et al.  The Human Brain Project and neuromorphic computing. , 2013, Functional neurology.

[36]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[38]  M. Arbib,et al.  Neural Organization: Structure, Function, and Dynamics , 1997 .

[39]  Sisir Roy,et al.  The ‘prediction imperative’ as the basis for self-awareness , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  H. Zelaznik,et al.  The Cerebellum and Event Timing , 2002, Annals of the New York Academy of Sciences.

[41]  Emily Underwood Neuroscience. Brain project draws presidential interest, but mixed reactions. , 2013, Science.

[42]  Richard B Ivry,et al.  The Predictive Brain State: Asynchrony in Disorders of Attention? , 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[43]  W. James,et al.  Il Cervelletto. Nuovi Studi di Fisiologia Normale e Patologica. , 1893 .

[44]  E. D’Angelo,et al.  Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition , 2013, Front. Neural Circuits.

[45]  Terrence J. Sejnowski,et al.  The Computational Brain , 1996, Artif. Intell..

[46]  Nick Dean,et al.  The Mind within the Net: Manfred Spitzer: MIT Press, Cambridge, MA, 351pp., ISBN: 0-262-1904-6 , 2000, Neurocomputing.

[47]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[48]  N. Sawtell,et al.  Cerebellum-like structures and their implications for cerebellar function. , 2008, Annual review of neuroscience.

[49]  Yosef Yarom,et al.  Invariant phase structure of olivo-cerebellar oscillations and its putative role in temporal pattern generation , 2009, Proceedings of the National Academy of Sciences.

[50]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[51]  Masao Ito Control of mental activities by internal models in the cerebellum , 2008, Nature Reviews Neuroscience.

[52]  Gary Stix Big Neuroscience: Billions and Billions (Maybe) to Unravel Mysteries of the Brain , 2013, Nature.

[53]  Egidio D'Angelo,et al.  Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells , 2006, The Journal of physiology.

[54]  E. D’Angelo,et al.  The cerebellar network: From structure to function and dynamics , 2011, Brain Research Reviews.

[55]  Rafael Yuste,et al.  Nanotools for neuroscience and brain activity mapping. , 2013, ACS nano.

[56]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[57]  E. D’Angelo,et al.  Neuronal circuit function and dysfunction in the cerebellum: from neurons to integrated control. , 2010, Functional neurology.

[58]  E. D’Angelo The human brain project. , 2012, Functional neurology.

[59]  Egidio D'Angelo,et al.  Fast-Reset of Pacemaking and Theta-Frequency Resonance Patterns in Cerebellar Golgi Cells: Simulations of their Impact In Vivo , 2007, Frontiers in cellular neuroscience.

[60]  S. Koekkoek,et al.  Spatiotemporal firing patterns in the cerebellum , 2011, Nature Reviews Neuroscience.

[61]  David Manset,et al.  Brain investigation and brain conceptualization. , 2013, Functional neurology.

[62]  Erik De Schutter,et al.  REALISTIC MODELING FOR EXPERIMENTALISTS , 2001 .

[63]  Angelo Arleo,et al.  How Synaptic Release Probability Shapes Neuronal Transmission: Information-Theoretic Analysis in a Cerebellar Granule Cell , 2010, Neural Computation.

[64]  Shigeo Watanabe,et al.  Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study , 2001, Brain Research.

[65]  M. Häusser,et al.  High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons , 2007, Nature.

[66]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[67]  Egidio D'Angelo,et al.  Tactile Stimulation Evokes Long-Term Synaptic Plasticity in the Granular Layer of Cerebellum , 2008, The Journal of Neuroscience.

[68]  G. Ferrigno,et al.  An integrated motor control loop of a human-like robotic arm: Feedforward, feedback and cerebellum-based learning , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[69]  James W. Deutsch The Mind within the Net: Models of Learning, Thinking and Acting , 2001 .

[70]  James M Bower,et al.  The Organization of Cerebellar Cortical Circuitry Revisited , 2002, Annals of the New York Academy of Sciences.

[71]  E. D’Angelo Neural circuits of the cerebellum: hypothesis for function. , 2011, Journal of integrative neuroscience.

[72]  D. Caplan,et al.  Cognition, emotion and the cerebellum. , 2006, Brain : a journal of neurology.

[73]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[74]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[75]  Eduardo Ros,et al.  Spike Timing Regulation on the Millisecond Scale by Distributed Synaptic Plasticity at the Cerebellum Input Stage: A Simulation Study , 2013, Front. Comput. Neurosci..

[76]  Richard B. Ivry,et al.  Is the cerebellum involved in learning and cognition? , 1992, Current Opinion in Neurobiology.

[77]  Alessandra Pedrocchi,et al.  Brain-inspired Sensorimotor Robotic Platform - Learning in Cerebellum-driven Movement Tasks through a Cerebellar Realistic Model , 2013, IJCCI.

[78]  J. Schmahmann Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. , 2004, The Journal of neuropsychiatry and clinical neurosciences.

[79]  C. I. De Zeeuw,et al.  Timing in the cerebellum: oscillations and resonance in the granular layer , 2009, Neuroscience.

[80]  J. Bower,et al.  An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. , 1994, Journal of neurophysiology.

[81]  Francesco Saverio Pavone,et al.  The connectomics challenge. , 2013, Functional neurology.

[82]  Yosef Yarom,et al.  A model of the olivo-cerebellar system as a temporal pattern generator , 2008, Trends in Neurosciences.

[83]  Sergio Solinas,et al.  Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control , 2011, PloS one.