Pumped thermal grid storage with heat exchange

A thermal heat-pump grid storage technology is described based on closed-cycle Brayton engine transfers of heat from a cryogenic storage fluid to molten solar salt. Round-trip efficiency, computed as a function of turbomachinery polytropic efficiency and total heat exchanger steel mass, is found to be competitive with that of pumped hydroelectric storage. The cost per engine watt and cost per stored joule based are estimated based on the present-day prices of power gas turbines and market prices of steel and nitrate salt. Comparison is made with electrochemical and mechanical grid storage technologies.

[1]  Donato Aquaro,et al.  High temperature heat exchangers for power plants : Performance of advanced metallic recuperators , 2007 .

[2]  S. A. Sjolander,et al.  Effect of the specific heat ratio on the aerodynamic performance of turbomachinery , 2005 .

[3]  Eamon McKeogh,et al.  Techno-economic review of existing and new pumped hydro energy storage plant , 2010 .

[4]  Genevieve Saur,et al.  Wind Electrolysis: Hydrogen Cost Optimization , 2011 .

[5]  R. Bradshaw,et al.  Corrosion of stainless steels and carbon steel by molten mixtures of commercial nitrate salts , 2004 .

[6]  Sally M. Benson,et al.  Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage , 2014 .

[7]  Е. С. Данилова,et al.  СОСТАВЛЕНИЕ ТЕРМИНОЛОГИЧЕСКОЙ БАЗЫ НА ОСНОВЕ ПЕРЕВОДА СТАНДАРТА API 650 "WELDED STEEL TANKS FOR OIL STORAGE" , 2013 .

[8]  Frank S. Barnes,et al.  Large energy storage systems handbook , 2011 .

[9]  Mohamed S. El-Genk,et al.  Axial flow, multi-stage turbine and compressor models , 2010 .

[10]  T. Bauer,et al.  Material aspects of Solar Salt for sensible heat storage , 2013 .

[11]  Jian Huang,et al.  Analysis and Optimization of a Compressed Air Energy Storage - Combined Cycle System , 2014, Entropy.

[12]  David Kenneth Hall Performance limits of axial turbomachine stages , 2011 .

[13]  Edward Barbour,et al.  Can negative electricity prices encourage inefficient electrical energy storage devices? , 2014 .

[14]  Giuseppe Grazzini,et al.  A Thermodynamic Analysis of Multistage Adiabatic CAES , 2012, Proceedings of the IEEE.

[15]  D. A. Nissen,et al.  Nitrate/nitrite chemistry in sodium nitrate-potassium nitrate melts , 1983 .

[16]  A. Kruizenga,et al.  Corrosion of Iron Stainless Steels in Molten Nitrate Salt , 2014 .

[17]  C. J. Wilson,et al.  The phase diagram of NaNO3—KNO3☆ , 1980 .

[18]  Marc J. Assael,et al.  The thermal conductivity of n-hexane, n-heptane, and n-decane by the transient hot-wire method , 1987 .

[19]  Aspi Rustom Wadia,et al.  Aerodynamic Design and Testing of an Axial Flow Compressor With Pressure Ratio of 23.3:1 for the LM2500+ Gas Turbine , 2002 .

[20]  R. Olivares The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres , 2012 .

[21]  Brian L. Spatocco,et al.  Liquid metal batteries: past, present, and future. , 2013, Chemical reviews.

[22]  Harald A. Øye,et al.  Viscosity of pure hydrocarbons , 1989 .

[23]  B. Kalinowska,et al.  Heat capacities of liquids at temperatures between 90 and 300 K and at atmospheric pressure I. Method and apparatus, and the heat capacities of n-heptane, n-hexane, and n-propanol , 1980 .

[24]  G. K. Mukhamedzyanov,et al.  Experimental investigation of the thermal conductivity of organic fluids at low temperatures , 1970 .

[25]  Sonia Fereres,et al.  Effect of Heating Rates and Composition on the Thermal Decomposition of Nitrate Based Molten Salts , 2015 .

[26]  Thong Q Dang,et al.  Aerodynamic Design Study of Advanced Multistage Axial Compressor , 2002 .

[27]  J. K. Schweitzer,et al.  Advanced industrial gas turbine technology readiness demonstration program. Phase II. Final report: compressor rig fabrication assembly and test , 1981 .

[28]  Dale T. Bradshaw,et al.  DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA , 2016 .

[29]  Aspi Rustom Wadia,et al.  Aerodynamic Design and Testing of an Axial Flow Compressor With Pressure Ratio of 23.3:1 for the LM2500+ Gas Turbine , 1999 .

[30]  Glen Swindle Valuation and Risk Management in Energy Markets , 2014 .

[31]  H. Craubner Densitometer for absolute measurements of the temperature dependence of density, partial volumes, and thermal expansivity of solids and liquids , 1986 .

[32]  Jennifer Lyons,et al.  Process Equipment Cost Estimation, Final Report , 2002 .

[33]  W. Hosford,et al.  Iron and Steel: Frontmatter , 2012 .

[34]  Claus Daniel,et al.  Prospects for reducing the processing cost of lithium ion batteries , 2015 .

[35]  L. H. Smith Axial Compressor Aerodesign Evolution at General Electric , 2002 .

[36]  P. Marty,et al.  A thermal energy storage process for large scale electric applications , 2010 .

[37]  Yongliang Li,et al.  Adiabatic Compressed Air Energy Storage with Packed Bed Thermal Energy Storage , 2015 .

[38]  Gary E Rochau,et al.  Operation and analysis of a supercritical CO2 Brayton cycle. , 2010 .

[39]  Paul W. Parfomak,et al.  Energy Storage for Power Grids and Electric Transportation: A Technology Assessment , 2012 .

[40]  Giorgio Locatelli,et al.  Assessing the economics of large Energy Storage Plants with an optimisation methodology , 2015 .

[41]  Paul Denholm,et al.  Grid flexibility and storage required to achieve very high penetration of variable renewable electricity , 2011 .

[42]  R. Tamme,et al.  Recent Progress in Alkali Nitrate/Nitrite Developments for Solar Thermal Power Applications , 2014 .

[43]  Juan M. Lema,et al.  Enzyme-assisted hexane extraction of soya bean oil , 1995 .

[44]  H. G. Drickamer,et al.  Viscosity of Normal Paraffins near the Freezing Point , 1949 .

[45]  Stéphanie Lacour,et al.  Thermal electricity storage by a thermodynamic process: study of temperature impact on the machines , 2013 .

[46]  A.G.M. Ferreira,et al.  PVT, viscosity, and surface tension of ethanol: New measurements and literature data evaluation , 2010 .

[47]  Michigan.,et al.  Toxicological profile for dichloropropenes , 2008 .

[48]  Christos N. Markides,et al.  Thermodynamic analysis of pumped thermal electricity storage , 2013 .

[49]  S. Dhomse,et al.  Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone , 2015 .

[50]  G. Janz,et al.  Melting-crystallization and premelting properties of sodium nitrate-potassium nitrate. Enthalpies and heat capacities , 1982 .

[51]  Eric W. Lemmon,et al.  Thermophysical Properties of Fluid Systems , 1998 .

[52]  Dominic A. Notter,et al.  Contribution of Li-ion batteries to the environmental impact of electric vehicles. , 2010, Environmental science & technology.

[53]  Rick Tidball,et al.  Cost and Performance Assumptions for Modeling Electricity Generation Technologies , 2010 .

[54]  Yulong Ding,et al.  Rheological Analysis of Binary Eutectic Mixture of Sodium and Potassium Nitrate and the Effect of Low Concentration CuO Nanoparticle Addition to Its Viscosity , 2015, Materials.

[55]  M. V. Zagarola,et al.  Friction factors for smooth pipe flow , 2004, Journal of Fluid Mechanics.

[56]  Elena M. Krieger,et al.  A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications , 2013 .

[57]  Ke Gong,et al.  A zinc–iron redox-flow battery under $100 per kW h of system capital cost , 2015 .

[58]  Yasuyoshi Kato,et al.  High performance printed circuit heat exchanger , 2007 .

[59]  Xuejun Zhang,et al.  Thermodynamic evaluation of phase equilibria in NaNO3-KNO3 system , 2003 .

[60]  P. J. Wan,et al.  Hexane and heptane as extraction solvents for cottonseed: A laboratory-scale study , 1995 .

[61]  C. Rydh Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage , 1999 .

[62]  D. L. Pyle,et al.  AQUEOUS AND ENZYMATIC PROCESSES FOR EDIBLE OIL EXTRACTION , 1996 .

[63]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[64]  F. Kurata,et al.  Density and viscosity of aqueous solutions of methanol and acetone from the freezing point to 10.deg. , 1971 .

[65]  Luai M. Al-Hadhrami,et al.  Pumped hydro energy storage system: A technological review , 2015 .

[66]  Anders Hammer Strømman,et al.  Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. , 2011, Environmental science & technology.

[67]  Hossein Safaei,et al.  Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization , 2013 .

[68]  K. Czerski,et al.  Energy intensities, EROIs, and energy payback times of electricity generating power plants , 2013 .

[69]  N. Siegel,et al.  MOLTEN NITRATE SALT DEVELOPMENT FOR THERMAL ENERGY STORAGE IN PARABOLIC TROUGH SOLAR POWER SYSTEMS , 2008 .

[70]  H. Müller-Steinhagen Concentrating solar thermal power , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[71]  Richard Van Noorden The rechargeable revolution: A better battery , 2014, Nature.

[72]  Jonathan Howes,et al.  Concept and Development of a Pumped Heat Electricity Storage Device , 2012, Proceedings of the IEEE.

[73]  G. Janz,et al.  Molten Salts: Volume 3 Nitrates, Nitrites, and Mixtures: Electrical Conductance, Density, Viscosity, and Surface Tension Data , 1972 .

[74]  G. Soloveichik Flow Batteries: Current Status and Trends. , 2015, Chemical reviews.

[75]  Stephen A. Hackney,et al.  High Energy Density Lithium Batteries: Materials, Engineering, Applications , 2010 .

[76]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[77]  David Lindley,et al.  Smart grids: The energy storage problem , 2010, Nature.

[78]  Eric Hittinger,et al.  Is inexpensive natural gas hindering the grid energy storage industry , 2015 .

[79]  David Linden,et al.  Linden's Handbook of Batteries , 2010 .

[80]  P. Berne,et al.  The Lake Nyos disaster: model calculations for the flow of carbon dioxide , 1992 .

[81]  André Thess,et al.  Thermodynamic efficiency of pumped heat electricity storage. , 2013, Physical review letters.

[82]  Jihong Wang,et al.  Overview of current development in electrical energy storage technologies and the application potential in power system operation , 2015 .