The Inferential Design of Entropy and its Application to Quantum Measurements.

This thesis synthesizes probability and entropic inference with Quantum Mechanics (QM) and quantum measurement [1-6]. It is shown that the standard and quantum relative entropies are tools designed for the purpose of updating probability distributions and density matrices, respectively [1]. The derivation of the standard and quantum relative entropies are completed in tandem and follow from the same inferential principle - the principle of minimal updating [21,66]. As the quantum maximum entropy method is derived using the standard quantum mechanical formalism, the quantum maximum entropy method may be appended to the standard quantum mechanical formalism and remove collapse as a required postulate, in agreement with [11]. The quantum maximum entropy method is found to be a "universal method of density matrix inference" as it can process information about data and moments simultaneously (giving joint generalized quantum inference solutions), which when processed separately gives the Quantum Bayes Rule [2,39] or a canonical quantum (von Neumann) maximum entropy solution [10], respectively, as special cases. The second part of this thesis revolves around a foundational theory of QM called Entropic Dynamics (ED) [13]. Rather than appending an interpretation to QM, ED states its interpretation, "that particles have definite, yet unknown, positions and that entropic probability updating works" - only then does ED derive QM as an application of inference consistent with these assumptions. This shift in interpretation allows one to solve the quantum measurement problem [3,14] and avoid being ruled out by quantum no-go theorems [4]. Observables are divvied-up into two classes in ED: they are the ontic "beables" [15] (particle position), and the epistemic "inferables" [3], which are not predisposed to be part of the ontology as they are inferred in general from position detections.

[1]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[2]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[3]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[4]  A. Horn Eigenvalues of sums of Hermitian matrices , 1962 .

[5]  H. Umegaki Conditional expectation in an operator algebra. IV. Entropy and information , 1962 .

[6]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[7]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[8]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[9]  E. Specker,et al.  The Problem of Hidden Variables in Quantum Mechanics , 1967 .

[10]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[11]  E. B. Davies Quantum theory of open systems , 1976 .

[12]  A. Uhlmann Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory , 1977 .

[13]  M. Suzuki,et al.  On the convergence of exponential operators—the Zassenhaus formula, BCH formula and systematic approximants , 1977 .

[14]  Rodney W. Johnson,et al.  Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.

[15]  W. Wootters Statistical distance and Hilbert space , 1981 .

[16]  R. Johnson,et al.  Properties of cross-entropy minimization , 1981, IEEE Trans. Inf. Theory.

[17]  M. Scully,et al.  Frontiers of nonequilibrium statistical physics , 1986 .

[18]  L. Campbell An extended Čencov characterization of the information metric , 1986 .

[19]  R. Balian,et al.  Equiprobability, inference, and entropy in quantum theory , 1987 .

[20]  Incomplete descriptions, relevant information, and entropy production in collision processes , 1987 .

[21]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[22]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[23]  M. Partovi,et al.  Quantum Density Matrix and Entropic Uncertainty , 1988 .

[24]  T. Wallstrom On the derivation of the Schrödinger equation from stochastic mechanics , 1989 .

[25]  J. Skilling The Axioms of Maximum Entropy , 1988 .

[26]  J. Skilling Classic Maximum Entropy , 1989 .

[27]  Gain of information in a quantum measurement , 1989 .

[28]  Stevenson,et al.  The sense in which a "weak measurement" of a spin-(1/2 particle's spin component yields a value 100. , 1989, Physical review. D, Particles and fields.

[29]  R. T. Cox Probability, frequency and reasonable expectation , 1990 .

[30]  C. R. Smith,et al.  Probability Theory and the Associativity Equation , 1990 .

[31]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[32]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[33]  D. Petz Characterization of the relative entropy of states of matrix algebras , 1992 .

[34]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[35]  N. Mermin Hidden variables and the two theorems of John Bell , 1993, 1802.10119.

[36]  P. Holland The Quantum Theory of Motion , 1993 .

[37]  W. Jauch Heisenberg's uncertainty relation and thermal vibrations in crystals , 1993 .

[38]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[39]  T. Wallstrom,et al.  Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[40]  R. Jozsa,et al.  Lower bound for accessible information in quantum mechanics. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[41]  L. Ballentine Quantum mechanics : a modern development , 1998 .

[42]  A. Korotkov Continuous quantum measurement of a double dot , 1999, cond-mat/9909039.

[43]  A. Kent Noncontextual Hidden Variables and Physical Measurements , 1999, quant-ph/9906006.

[44]  D. Meyer Finite Precision Measurement Nullifies the Kochen-Specker Theorem , 1999, quant-ph/9905080.

[45]  Incomplete descriptions and relevant entropies , 1999, cond-mat/9907015.

[46]  T. Tao,et al.  Honeycombs and sums of Hermitian matrices , 2000, math/0009048.

[47]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[48]  A. Kent,et al.  Simulating quantum mechanics by non-contextual hidden variables , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[49]  Michael D. Westmoreland,et al.  Relative entropy in quantum information theory , 2000, quant-ph/0004045.

[50]  A. Caticha Insufficient Reason and Entropy in Quantum Theory , 1998, quant-ph/9810074.

[51]  A. Holevo Statistical structure of quantum theory , 2001 .

[52]  Rajendra Bhatia,et al.  Linear Algebra to Quantum Cohomology: The Story of Alfred Horn's Inequalities , 2001, Am. Math. Mon..

[53]  C. Caves,et al.  Quantum Bayes rule , 2000, quant-ph/0008113.

[54]  A. Korotkov Selective quantum evolution of a qubit state due to continuous measurement , 2000, cond-mat/0008461.

[55]  P. K. Aravind,et al.  Bell’s Theorem Without Inequalities and Only Two Distant Observers , 2001, OFC 2001.

[56]  Joseph Y. Halpern,et al.  Updating Probabilities , 2002, UAI.

[57]  E. Jaynes Probability theory : the logic of science , 2003 .

[58]  D. M. Appleby The Bell–Kochen–Specker theorem , 2003, quant-ph/0308114.

[59]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[60]  On the principles of quantum mechanics , 2004, quant-ph/0405069.

[61]  A. Caticha Relative Entropy and Inductive Inference , 2003, physics/0311093.

[62]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[63]  A. Jordan,et al.  Qubit feedback and control with kicked quantum nondemolition measurements: A quantum Bayesian analysis , 2006, cond-mat/0606676.

[64]  A. Caticha Information and Entropy , 2007, 0710.1068.

[65]  A. Caticha From Objective Amplitudes to Bayesian Probabilities , 2006, quant-ph/0610076.

[66]  H. Wiseman Grounding Bohmian mechanics in weak values and bayesianism , 2007, 0706.2522.

[67]  Ariel Caticha,et al.  Updating Probabilities with Data and Moments , 2007, ArXiv.

[68]  Adom Giffin Maximum Entropy: The Universal Method for Inference , 2008 .

[69]  A. Caticha From Entropic Dynamics to Quantum Theory , 2009, 0907.4335.

[70]  Edwin T. Jaynes Prior Probabilities , 2010, Encyclopedia of Machine Learning.

[71]  A. Plastino,et al.  State-independent quantum contextuality for continuous variables , 2010, 1005.1620.

[72]  Bram Gaasbeek Demystifying the Delayed Choice Experiments , 2010, 1007.3977.

[73]  A. Caticha Entropic dynamics, time and quantum theory , 2010, 1005.2357.

[74]  M. Hall,et al.  Quantum theory from the geometry of evolving probabilities , 2011, 1108.5601.

[75]  J. Lundeen,et al.  Direct measurement of the quantum wavefunction , 2011, Nature.

[76]  M. Hall,et al.  Information geometry, dynamics and discrete quantum mechanics , 2012, 1207.6718.

[77]  S. Popescu,et al.  Quantum Cheshire Cats , 2012, 1202.0631.

[78]  A. Giffin,et al.  On a differential geometric viewpoint of Jaynes' MaxEnt method and its quantum extension , 2011, 1110.6712.

[79]  A. Caticha,et al.  Entropic dynamics and the quantum measurement problem , 2011, 1108.2550.

[80]  Matthew F Pusey,et al.  On the reality of the quantum state , 2011, Nature Physics.

[81]  J Eisert,et al.  Quantum measurement occurrence is undecidable. , 2011, Physical review letters.

[82]  Ariel Caticha,et al.  Towards an Informational Pragmatic Realism , 2014, Minds and Machines.

[83]  P. K. Aravind,et al.  Proofs of the Kochen-Specker theorem based on the N-qubit Pauli group , 2013, 1302.4801.

[84]  F. Hellmann,et al.  Quantum collapse rules from the maximum relative entropy principle , 2014, 1407.7766.

[85]  Ryszard Pawel Kostecki,et al.  Lüders' and quantum Jeffrey's rules as entropic projections , 2014, ArXiv.

[86]  S. Popescu,et al.  The quantum pigeonhole principle and the nature of quantum correlations , 2014, 1407.3194.

[87]  A. Jordan,et al.  Colloquium : Understanding quantum weak values: Basics and applications , 2013, 1305.7154.

[88]  M. S. Leifer,et al.  Is the Quantum State Real? An Extended Review of -ontology Theorems , 2014, 1409.1570.

[89]  K. Jacobs Quantum Measurement Theory and its Applications , 2014 .

[90]  A. Caticha,et al.  Entropic quantization of scalar fields , 2014, 1412.5637.

[91]  A. Caticha,et al.  Entropic Dynamics: The Schroedinger equation and its Bohmian limit , 2015, 1512.09084.

[92]  M. Waegell,et al.  Contextuality, Pigeonholes, Cheshire Cats, Mean Kings, and Weak Values , 2015, 1505.00098.

[93]  M. Ban Conditional average in a quantum system with postselection , 2015 .

[94]  How Kirkwood and Probability Distributions Differ: A Coxian Perspective , 2016, 1612.00494.

[95]  A. Caticha,et al.  Entropic Dynamics on Curved Spaces , 2016, 1601.01708.

[96]  No Quantum Process Can Explain the Existence of the Preferred Basis: Decoherence Is Not Universal , 2016, 1609.07984.

[97]  Ariel Caticha,et al.  The Classical Limit of Entropic Quantum Dynamics , 2016, ArXiv.

[98]  A. Caticha,et al.  Trading drift and fluctuations in entropic dynamics: quantum dynamics as an emergent universality class , 2016, 1603.08469.

[99]  D. Struppa,et al.  Quantum violation of the pigeonhole principle and the nature of quantum correlations , 2016, Proceedings of the National Academy of Sciences.

[100]  Kevin Vanslette The quantum Bayes rule and generalizations from the quantum maximum entropy method , 2017, 1710.10949.

[101]  Kevin Vanslette A Multiple Observer Probability Analysis for Bell Scenarios in Special Relativity , 2017, 1712.01265.

[102]  A. Caticha,et al.  Quantum measurement and weak values in entropic dynamics , 2017, 1701.00781.

[103]  Jens Eisert,et al.  Axiomatic Characterization of the Quantum Relative Entropy and Free Energy , 2017, Entropy.

[104]  A. Caticha,et al.  Quantum phases in entropic dynamics , 2017, 1708.08977.

[105]  Selman Ipek Covariant entropic dynamics: from path independence to Hamiltonians and quantum theory , 2017, 1711.03181.

[106]  Kevin Vanslette,et al.  Entropic Updating of Probabilities and Density Matrices , 2017, Entropy.

[107]  A. Caticha Entropic Dynamics: Quantum Mechanics from Entropy and Information Geometry , 2017, 1711.02538.

[108]  Ariel Caticha,et al.  Exact Renormalization Groups As a Form of Entropic Dynamics , 2017, Entropy.

[109]  Kevin Vanslette Entropic dynamics: a hybrid-contextual model of quantum mechanics , 2017, Quantum Studies: Mathematics and Foundations.

[110]  C. Ronde Unscrambling the Omelette of Quantum Contextuality (Part I): Preexistent Properties or Measurement Outcomes? , 2016, Foundations of Science.