The Inferential Design of Entropy and its Application to Quantum Measurements.
暂无分享,去创建一个
[1] J. Neumann. Mathematische grundlagen der Quantenmechanik , 1935 .
[2] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[3] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[4] A. Horn. Eigenvalues of sums of Hermitian matrices , 1962 .
[5] H. Umegaki. Conditional expectation in an operator algebra. IV. Entropy and information , 1962 .
[6] J. Bell. On the Einstein-Podolsky-Rosen paradox , 1964 .
[7] R. Feynman,et al. Quantum Mechanics and Path Integrals , 1965 .
[8] J. Bell. On the Problem of Hidden Variables in Quantum Mechanics , 1966 .
[9] E. Specker,et al. The Problem of Hidden Variables in Quantum Mechanics , 1967 .
[10] A. Shimony,et al. Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .
[11] E. B. Davies. Quantum theory of open systems , 1976 .
[12] A. Uhlmann. Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory , 1977 .
[13] M. Suzuki,et al. On the convergence of exponential operators—the Zassenhaus formula, BCH formula and systematic approximants , 1977 .
[14] Rodney W. Johnson,et al. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.
[15] W. Wootters. Statistical distance and Hilbert space , 1981 .
[16] R. Johnson,et al. Properties of cross-entropy minimization , 1981, IEEE Trans. Inf. Theory.
[17] M. Scully,et al. Frontiers of nonequilibrium statistical physics , 1986 .
[18] L. Campbell. An extended Čencov characterization of the information metric , 1986 .
[19] R. Balian,et al. Equiprobability, inference, and entropy in quantum theory , 1987 .
[20] Incomplete descriptions, relevant information, and entropy production in collision processes , 1987 .
[21] Vaidman,et al. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.
[22] J. Bell,et al. Speakable and Unspeakable in Quatum Mechanics , 1988 .
[23] M. Partovi,et al. Quantum Density Matrix and Entropic Uncertainty , 1988 .
[24] T. Wallstrom. On the derivation of the Schrödinger equation from stochastic mechanics , 1989 .
[25] J. Skilling. The Axioms of Maximum Entropy , 1988 .
[26] J. Skilling. Classic Maximum Entropy , 1989 .
[27] Gain of information in a quantum measurement , 1989 .
[28] Stevenson,et al. The sense in which a "weak measurement" of a spin-(1/2 particle's spin component yields a value 100. , 1989, Physical review. D, Particles and fields.
[29] R. T. Cox. Probability, frequency and reasonable expectation , 1990 .
[30] C. R. Smith,et al. Probability Theory and the Associativity Equation , 1990 .
[31] F. Hiai,et al. The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .
[32] I. Csiszár. Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .
[33] D. Petz. Characterization of the relative entropy of states of matrix algebras , 1992 .
[34] D. Petz,et al. Quantum Entropy and Its Use , 1993 .
[35] N. Mermin. Hidden variables and the two theorems of John Bell , 1993, 1802.10119.
[36] P. Holland. The Quantum Theory of Motion , 1993 .
[37] W. Jauch. Heisenberg's uncertainty relation and thermal vibrations in crystals , 1993 .
[38] R. Jozsa,et al. A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .
[39] T. Wallstrom,et al. Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[40] R. Jozsa,et al. Lower bound for accessible information in quantum mechanics. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[41] L. Ballentine. Quantum mechanics : a modern development , 1998 .
[42] A. Korotkov. Continuous quantum measurement of a double dot , 1999, cond-mat/9909039.
[43] A. Kent. Noncontextual Hidden Variables and Physical Measurements , 1999, quant-ph/9906006.
[44] D. Meyer. Finite Precision Measurement Nullifies the Kochen-Specker Theorem , 1999, quant-ph/9905080.
[45] Incomplete descriptions and relevant entropies , 1999, cond-mat/9907015.
[46] T. Tao,et al. Honeycombs and sums of Hermitian matrices , 2000, math/0009048.
[47] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[48] A. Kent,et al. Simulating quantum mechanics by non-contextual hidden variables , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[49] Michael D. Westmoreland,et al. Relative entropy in quantum information theory , 2000, quant-ph/0004045.
[50] A. Caticha. Insufficient Reason and Entropy in Quantum Theory , 1998, quant-ph/9810074.
[51] A. Holevo. Statistical structure of quantum theory , 2001 .
[52] Rajendra Bhatia,et al. Linear Algebra to Quantum Cohomology: The Story of Alfred Horn's Inequalities , 2001, Am. Math. Mon..
[53] C. Caves,et al. Quantum Bayes rule , 2000, quant-ph/0008113.
[54] A. Korotkov. Selective quantum evolution of a qubit state due to continuous measurement , 2000, cond-mat/0008461.
[55] P. K. Aravind,et al. Bell’s Theorem Without Inequalities and Only Two Distant Observers , 2001, OFC 2001.
[56] Joseph Y. Halpern,et al. Updating Probabilities , 2002, UAI.
[57] E. Jaynes. Probability theory : the logic of science , 2003 .
[58] D. M. Appleby. The Bell–Kochen–Specker theorem , 2003, quant-ph/0308114.
[59] W. Zurek. Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.
[60] On the principles of quantum mechanics , 2004, quant-ph/0405069.
[61] A. Caticha. Relative Entropy and Inductive Inference , 2003, physics/0311093.
[62] M. Schlosshauer. Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.
[63] A. Jordan,et al. Qubit feedback and control with kicked quantum nondemolition measurements: A quantum Bayesian analysis , 2006, cond-mat/0606676.
[64] A. Caticha. Information and Entropy , 2007, 0710.1068.
[65] A. Caticha. From Objective Amplitudes to Bayesian Probabilities , 2006, quant-ph/0610076.
[66] H. Wiseman. Grounding Bohmian mechanics in weak values and bayesianism , 2007, 0706.2522.
[67] Ariel Caticha,et al. Updating Probabilities with Data and Moments , 2007, ArXiv.
[68] Adom Giffin. Maximum Entropy: The Universal Method for Inference , 2008 .
[69] A. Caticha. From Entropic Dynamics to Quantum Theory , 2009, 0907.4335.
[70] Edwin T. Jaynes. Prior Probabilities , 2010, Encyclopedia of Machine Learning.
[71] A. Plastino,et al. State-independent quantum contextuality for continuous variables , 2010, 1005.1620.
[72] Bram Gaasbeek. Demystifying the Delayed Choice Experiments , 2010, 1007.3977.
[73] A. Caticha. Entropic dynamics, time and quantum theory , 2010, 1005.2357.
[74] M. Hall,et al. Quantum theory from the geometry of evolving probabilities , 2011, 1108.5601.
[75] J. Lundeen,et al. Direct measurement of the quantum wavefunction , 2011, Nature.
[76] M. Hall,et al. Information geometry, dynamics and discrete quantum mechanics , 2012, 1207.6718.
[77] S. Popescu,et al. Quantum Cheshire Cats , 2012, 1202.0631.
[78] A. Giffin,et al. On a differential geometric viewpoint of Jaynes' MaxEnt method and its quantum extension , 2011, 1110.6712.
[79] A. Caticha,et al. Entropic dynamics and the quantum measurement problem , 2011, 1108.2550.
[80] Matthew F Pusey,et al. On the reality of the quantum state , 2011, Nature Physics.
[81] J Eisert,et al. Quantum measurement occurrence is undecidable. , 2011, Physical review letters.
[82] Ariel Caticha,et al. Towards an Informational Pragmatic Realism , 2014, Minds and Machines.
[83] P. K. Aravind,et al. Proofs of the Kochen-Specker theorem based on the N-qubit Pauli group , 2013, 1302.4801.
[84] F. Hellmann,et al. Quantum collapse rules from the maximum relative entropy principle , 2014, 1407.7766.
[85] Ryszard Pawel Kostecki,et al. Lüders' and quantum Jeffrey's rules as entropic projections , 2014, ArXiv.
[86] S. Popescu,et al. The quantum pigeonhole principle and the nature of quantum correlations , 2014, 1407.3194.
[87] A. Jordan,et al. Colloquium : Understanding quantum weak values: Basics and applications , 2013, 1305.7154.
[88] M. S. Leifer,et al. Is the Quantum State Real? An Extended Review of -ontology Theorems , 2014, 1409.1570.
[89] K. Jacobs. Quantum Measurement Theory and its Applications , 2014 .
[90] A. Caticha,et al. Entropic quantization of scalar fields , 2014, 1412.5637.
[91] A. Caticha,et al. Entropic Dynamics: The Schroedinger equation and its Bohmian limit , 2015, 1512.09084.
[92] M. Waegell,et al. Contextuality, Pigeonholes, Cheshire Cats, Mean Kings, and Weak Values , 2015, 1505.00098.
[93] M. Ban. Conditional average in a quantum system with postselection , 2015 .
[94] How Kirkwood and Probability Distributions Differ: A Coxian Perspective , 2016, 1612.00494.
[95] A. Caticha,et al. Entropic Dynamics on Curved Spaces , 2016, 1601.01708.
[96] No Quantum Process Can Explain the Existence of the Preferred Basis: Decoherence Is Not Universal , 2016, 1609.07984.
[97] Ariel Caticha,et al. The Classical Limit of Entropic Quantum Dynamics , 2016, ArXiv.
[98] A. Caticha,et al. Trading drift and fluctuations in entropic dynamics: quantum dynamics as an emergent universality class , 2016, 1603.08469.
[99] D. Struppa,et al. Quantum violation of the pigeonhole principle and the nature of quantum correlations , 2016, Proceedings of the National Academy of Sciences.
[100] Kevin Vanslette. The quantum Bayes rule and generalizations from the quantum maximum entropy method , 2017, 1710.10949.
[101] Kevin Vanslette. A Multiple Observer Probability Analysis for Bell Scenarios in Special Relativity , 2017, 1712.01265.
[102] A. Caticha,et al. Quantum measurement and weak values in entropic dynamics , 2017, 1701.00781.
[103] Jens Eisert,et al. Axiomatic Characterization of the Quantum Relative Entropy and Free Energy , 2017, Entropy.
[104] A. Caticha,et al. Quantum phases in entropic dynamics , 2017, 1708.08977.
[105] Selman Ipek. Covariant entropic dynamics: from path independence to Hamiltonians and quantum theory , 2017, 1711.03181.
[106] Kevin Vanslette,et al. Entropic Updating of Probabilities and Density Matrices , 2017, Entropy.
[107] A. Caticha. Entropic Dynamics: Quantum Mechanics from Entropy and Information Geometry , 2017, 1711.02538.
[108] Ariel Caticha,et al. Exact Renormalization Groups As a Form of Entropic Dynamics , 2017, Entropy.
[109] Kevin Vanslette. Entropic dynamics: a hybrid-contextual model of quantum mechanics , 2017, Quantum Studies: Mathematics and Foundations.
[110] C. Ronde. Unscrambling the Omelette of Quantum Contextuality (Part I): Preexistent Properties or Measurement Outcomes? , 2016, Foundations of Science.