Low-dimensional Quantum Magnetism in Cu(NCS) 2 , a Molecular Framework Material

Low dimensional magnetic materials with spin-$\frac{1}{2}$ moments can host a range of exotic magnetic phenomena due to the intrinsic importance of quantum fluctuations to their behaviour. In this work we report the structure, magnetic structure and magnetic properties of copper(II) thiocyanate, Cu(NCS)$_2$, a one-dimensional coordination polymer which displays low-dimensional quantum magnetism. Magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, $^{13}$C magic angle spinning nuclear magnetic resonance (MASNMR) spectroscopy, and density functional theory (DFT) investigations indicate that Cu(NCS)$_2$ behaves as a two dimensional array of weakly coupled antiferromagnetic spin chains ($J_2 = 133(1)\,$K, $\alpha = J_1/J_2 = 0.08$). Powder neutron diffraction measurements confirm that below $T_\mathrm{N} = 12$ K Cu(NCS)$_2$ orders as a commensurate G-type antiferromagnet with a strongly reduced ordered moment (0.3$\,\mu_\mathrm{B}$) due to quantum fluctuations.

[1]  M. Stone,et al.  Spin order and dynamics in the diamond-lattice Heisenberg antiferromagnets CuRh 2 O 4 and CoRh 2 O 4 , 2017, 1706.05881.

[2]  M. Oshikawa,et al.  Designing Kitaev Spin Liquids in Metal-Organic Frameworks. , 2016, Physical review letters.

[3]  J. Sanz,et al.  Structural, electronic and optical properties of copper, silver and gold sulfide: a DFT study , 2016, Theoretical Chemistry Accounts.

[4]  Peter M. M. Thygesen,et al.  Searching beyond Gd for magnetocaloric frameworks: magnetic properties and interactions of the Ln(HCO2)3 series , 2015 .

[5]  R. Fishman,et al.  Pressure-induced enhancement of the magnetic anisotropy in Mn ( N ( CN ) 2 ) 2 , 2014, 1412.2318.

[6]  T. Perring,et al.  Fractional excitations in the square lattice quantum antiferromagnet , 2014, Nature Physics.

[7]  S. Blundell,et al.  Antiferromagnetism in a Family of S = 1 Square Lattice Coordination Polymers NiX2(pyz)2 (X = Cl, Br, I, NCS; pyz = Pyrazine). , 2014, Inorganic chemistry.

[8]  R. Orlando,et al.  CRYSTAL14: A program for the ab initio investigation of crystalline solids , 2014 .

[9]  P. F. Peterson,et al.  Mantid - Data Analysis and Visualization Package for Neutron Scattering and $μ SR$ Experiments , 2014, 1407.5860.

[10]  C. Landee,et al.  Review: A gentle introduction to magnetism: units, fields, theory, and experiment† , 2014 .

[11]  H. Rønnow,et al.  Fractional spinon excitations in the quantum Heisenberg antiferromagnetic chain , 2013, Nature Physics.

[12]  P. Jain,et al.  Dimethylammonium copper formate [(CH 3 ) 2 NH 2 ]Cu(HCOO) 3 : A metal-organic framework with quasi-one-dimensional antiferromagnetism and magnetostriction , 2013 .

[13]  J. Musfeldt,et al.  Quantum critical transition amplifies magnetoelastic coupling in Mn[N(CN)2]2. , 2013, Physical review letters.

[14]  Fiona C. Strobridge,et al.  Density Functional Theory-Based Bond Pathway Decompositions of Hyperfine Shifts: Equipping Solid-State NMR to Characterize Atomic Environments in Paramagnetic Materials , 2013 .

[15]  B. Machura,et al.  Structural diversity and magnetic properties of thiocyanate copper(II) complexes , 2013 .

[16]  J. Rodríguez-Carvajal,et al.  The role of order-disorder transitions in the quest for molecular multiferroics: structural and magnetic neutron studies of a mixed valence iron(II)-iron(III) formate framework. , 2012, Journal of the American Chemical Society.

[17]  Joel S. Miller,et al.  Extended network thiocyanate- and tetracyanoethanide-based first-row transition metal complexes. , 2012, Inorganic chemistry.

[18]  Maw-Kuen Wu,et al.  CuBr2 – A New Multiferroic Material with High Critical Temperature , 2012, Advances in Materials.

[19]  S. Blundell,et al.  Dimensionality selection in a molecule-based magnet. , 2012, Physical review letters.

[20]  N. Harrison,et al.  Two-dimensional spin-12rectangular Heisenberg antiferromagnets: Simulation and experiment , 2011 .

[21]  P. Manuel,et al.  Wish: The New Powder and Single Crystal Magnetic Diffractometer on the Second Target Station , 2011 .

[22]  C. Grey,et al.  Linking local environments and hyperfine shifts: a combined experimental and theoretical (31)P and (7)Li solid-state NMR study of paramagnetic Fe(III) phosphates. , 2010, Journal of the American Chemical Society.

[23]  Mario Wriedt,et al.  In situ solid state formation of copper(I) coordination polymers by thermal reduction of copper(II) precursor compounds: structure and reactivity of [Cu(NCS)2(pyrimidine)2]n. , 2009, Dalton transactions.

[24]  B. Ouladdiaf,et al.  Magnetic Ordering in the Frustrated Heisenberg Chain System Cupric Chloride, CuCl$_2$ , 2009, 0904.2929.

[25]  J. Berry,et al.  Diamagnetic Corrections and Pascal's Constants , 2008 .

[26]  Darrick J. Williams,et al.  Temperature dependence of the crystal structure of α-AgSCN by powder neutron diffraction , 2007 .

[27]  J. Málek,et al.  Frustrated cuprate route from antiferromagnetic to ferromagnetic spin-1/2 Heisenberg chains: Li2ZrCuO4 as a missing link near the quantum critical point. , 2007, Physical review letters.

[28]  P. Cheng,et al.  Synthesis, crystal structure, magnetic properties and theoretical studies on a one-dimensional polynuclear copper(II) complex [Cu2(mu1,3-SCN)2(mu'1,3-SCN)2(MPyO)2]n. , 2006, Dalton transactions.

[29]  S. Blundell,et al.  [Cu(HF2)(pyz)2]BF4 (pyz = pyrazine): long-range magnetic ordering in a pseudo-cubic coordination polymer comprised of bridging HF2- and pyrazine ligands. , 2006, Chemical communications.

[30]  Kenji Sato,et al.  Ferroelectric Transition Induced by the Incommensurate Magnetic Ordering in LiCuVO4 , 2006, cond-mat/0611659.

[31]  M. Nolan,et al.  The p-type conduction mechanism in Cu2O: a first principles study. , 2006, Physical chemistry chemical physics : PCCP.

[32]  U. Roessler,et al.  Spin-flop transition in uniaxial antiferromagnets: Magnetic phases, reorientation effects, and multidomain states , 2006, cond-mat/0609648.

[33]  David E. Tanner,et al.  ISODISPLACE: a web-based tool for exploring structural distortions , 2006 .

[34]  P. Mendels,et al.  Correlations, spin dynamics, defects: the highly frustrated kagomé bilayer , 2005, cond-mat/0503496.

[35]  A. Hauser,et al.  Crystalline, mixed-valence manganese analogue of prussian blue: magnetic, spectroscopic, X-ray and neutron diffraction studies. , 2004, Journal of the American Chemical Society.

[36]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[37]  S. Batten,et al.  Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide , 2003 .

[38]  C. Ling,et al.  Structural and magnetic behavior of a quasi-1D antiferromagnetic chain compound Cu(NCS)2(pyz) , 2003 .

[39]  M. Green,et al.  Magnetic ordering in the rutile molecular magnets M II [N(CN) 2 ] 2 (M=Ni, Co, Fe, Mn, Ni 0.5 Co 0.5 , and Ni 0.5 Fe 0.5 ) , 2003 .

[40]  M. Hasenbusch,et al.  Critical exponents and equation of state of the three-dimensional Heisenberg universality class , 2001, cond-mat/0110336.

[41]  M. Baenitz,et al.  Quasi-one-dimensional spin chains in CuSiO3: an EPR study , 2000, cond-mat/0005346.

[42]  Andrea Prior,et al.  A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality , 2000 .

[43]  Johnston,et al.  Thermodynamics of the spin- 1/2 antiferromagnetic uniform heisenberg chain , 2000, Physical review letters.

[44]  C. A. White,et al.  A Homoleptic Copper(II)-Thiocyanato Linear Chain , 1999 .

[45]  E. Gmelin,et al.  Specific heat capacity of Apiezon N high vacuum grease and of Duran borosilicate glass , 1999 .

[46]  Robin K. Harris,et al.  Solid-State 199Hg MAS NMR Studies of Mercury(II) Thiocyanate Complexes and Related Compounds. Crystal Structure of Hg(SeCN)2 , 1998 .

[47]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[48]  E. Tiekink,et al.  First Example of Equatorial-Equatorial Disposition of End-to-End Thiocyanate Bridges in a Polynuclear Copper(II) Complex and Its Relation to the Very Efficient Transmission of the Magnetic Interaction , 1997 .

[49]  G. Shirane,et al.  Reduction of Ordered Moment and Néel Temperature of Quasi-One-Dimensional Antiferromagnets Sr2CuO3 and Ca2CuO3 , 1997, cond-mat/9701091.

[50]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[51]  Schulz Hj Dynamics of Coupled Quantum Spin Chains. , 1996 .

[52]  T. Rojo,et al.  [N(CH3)4][Mn(N3)3]: A Compound with a Distorted Perovskite Structure through Azido Ligands , 1996 .

[53]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[54]  M. Verdaguer,et al.  A room-temperature organometallic magnet based on Prussian blue , 1995, Nature.

[55]  D. P. Burum,et al.  Temperature Dependence of 207 Pb MAS Spectra of Solid Lead Nitrate. An Accurate, Sensitive Thermometer for Variable-Temperature MAS , 1995 .

[56]  T. M. Rice,et al.  Surprises on the Way from One- to Two-Dimensional Quantum Magnets: The Ladder Materials , 1995, Science.

[57]  Hase,et al.  Observation of the spin-Peierls transition in linear Cu2+ (spin-1/2) chains in an inorganic compound CuGeO3. , 1993, Physical review letters.

[58]  M. Julve,et al.  Synthesis, crystal structure, and magnetic properties of (.mu.-bipyrimidine)(cyanato)copper(II) and -(thiocyanato)copper(II) complexes , 1993 .

[59]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[60]  J. Britten,et al.  A 13C and 15N nuclear magnetic resonance study of solid ammonium thiocyanate , 1987 .

[61]  H. Gysling,et al.  Solid-state carbon-13 NMR characterization of the bonding mode of the thiocyanate ion in copper(I) complexes , 1982 .

[62]  G. S. Pawley,et al.  Unit-cell refinement from powder diffraction scans , 1981 .

[63]  G. D. Watkins,et al.  Spin-Peierls transitions in magnetic donor-acceptor compounds of tetrathiafulvalene (TTF ) with bisdithiolene metal complexes , 1976 .

[64]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[65]  A. Beauchamp,et al.  Structure cristalline et moléculaire du thiocyanate mercurique , 1972 .

[66]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[67]  L. Birckenbach,et al.  Über Pseudohalogene (II.): 1. Der Knallsäure-Rest. 2. Das Gleichgewicht zwischen Jod, Selenocyan und den entsprechenden Silbersalzen. 3. Polypseudohalogenide , 1925 .

[68]  C. Grey,et al.  A systematic study of 25Mg NMR in paramagnetic transition metal oxides: applications to Mg-ion battery materials. , 2016, Physical chemistry chemical physics : PCCP.

[69]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[70]  E. Manousakis The spin- 1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides , 1991 .

[71]  H. Oswald,et al.  Intermediates in thermal decomposition of nickel(II) complexes: The crystal structures of Ni(SCN)2(NH3)2 and Ni(SCN)2 , 1982 .

[72]  J. Gaz̆o,et al.  The crystal structure of copper(I) thiocyanate and its relation to the crystal structure of copper(II) diammine dithiocyanate complex , 1976 .

[73]  J. A. Hunter,et al.  Thermal rearrangement in copper(II) thiocyanate , 1969 .

[74]  C. Ng,et al.  Linear antiferromagnetism in copper bromide and copper chloride , 1964 .

[75]  John B. Goodenough,et al.  Magnetism and the chemical bond , 1963 .

[76]  A. Bramley,et al.  L.—The action of water on cupric thiocyanate , 1916 .

[77]  C. Claus Beiträge zur näheren Kenntniss der Schwefelcyanmetalle , 1838 .