Optimal control computation for nonlinear systems with state-dependent stopping criteria

In this paper, we consider a challenging optimal control problem in which the terminal time is determined by a stopping criterion. This stopping criterion is defined by a smooth surface in the state space; when the state trajectory hits this surface, the governing dynamic system stops. By restricting the controls to piecewise constant functions, we derive a finite-dimensional approximation of the optimal control problem. We then develop an efficient computational method, based on nonlinear programming, for solving the approximate problem. We conclude the paper with four numerical examples.

[1]  Kok Lay Teo,et al.  A Unified Computational Approach to Optimal Control Problems , 1991 .

[2]  Kok Lay Teo,et al.  MISER3 version 2, Optimal Control Software, Theory and User Manual , 1997 .

[3]  T. L. Vincent,et al.  Optimality in parametric systems , 1981 .

[4]  Kok Lay Teo,et al.  Optimal control problems with multiple characteristic time points in the objective and constraints , 2008, Autom..

[5]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[6]  K. Teo,et al.  A New Computational Method for a Class of Free Terminal Time Optimal Control Problems , 2011 .

[7]  J. M. Martínez,et al.  Euler Discretization and Inexact Restoration for Optimal Control , 2007 .

[8]  K. Teo,et al.  Control parametrization enhancing technique for time optimal control problems , 1997 .

[9]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[10]  Kok Lay Teo,et al.  A computational method for free time optimal control problems, with application to maximizing the range of an aircraft-like projectile , 1987, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[11]  A. Hindmarsh,et al.  Large ordinary differential equation systems and software , 1982, IEEE Control Systems Magazine.

[12]  Matthias Gerdts,et al.  Hamburger Beiträge zur Angewandten Mathematik A nonsmooth Newton ’ s method for discretized optimal control problems with state and control constraints , 2007 .

[13]  C. Kaya,et al.  Computational Method for Time-Optimal Switching Control , 2003 .

[14]  Rein Luus,et al.  Iterative dynamic programming , 2019, Iterative Dynamic Programming.

[15]  Ryan N. Smith,et al.  Increasing underwater vehicle autonomy by reducing energy consumption , 2009 .

[16]  H. J. Pesch,et al.  Combining Direct and Indirect Methods in Optimal Control: Range Maximization of a Hang Glider , 1993 .

[17]  Robert J. Vanderbei Case Studies in Trajectory Optimization: Trains, Planes, and Other Pastimes , 2001 .

[18]  N. U. Ahmed,et al.  Elements of Finite-dimensional Systems and Control Theory , 1988 .

[19]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[20]  C. Goh,et al.  A Computational Method for a Class of Dynamical Optimization Problems in which the Terminal Time is Conditionally Free , 1989 .