A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters.

We report on how the transition from the bulk structure to the cluster-specific structure occurs in n-dodecanethiolate-protected gold clusters, Au(n)(SC12)m. To elucidate this transition, we isolated a series of Au(n)(SC12)m in the n range from 38 to ∼520, containing five newly identified or newly isolated clusters, Au104(SC12)45, Au(∼226)(SC12)(∼76), Au(∼253)(SC12)(∼90), Au(∼356)(SC12)(∼112), and Au(∼520)(SC12)(∼130), using reverse-phase high-performance liquid chromatography. Low-temperature optical absorption spectroscopy, powder X-ray diffractometry, and density functional theory (DFT) calculations revealed that the Au cores of Au144(SC12)60 and smaller clusters have molecular-like electronic structures and non-fcc geometric structures, whereas the structures of the Au cores of larger clusters resemble those of the bulk gold. A new structure model is proposed for Au104(SC12)45 based on combined approach between experiments and DFT calculations.

[1]  Y. Negishi,et al.  Isolation, structure, and stability of a dodecanethiolate-protected Pd(1)Au(24) cluster. , 2010, Physical chemistry chemical physics : PCCP.

[2]  D. Cullen,et al.  Faradaurate-940: synthesis, mass spectrometry, electron microscopy, high-energy X-ray diffraction, and X-ray scattering study of Au∼940±20(SR)∼160±4 nanocrystals. , 2014, ACS nano.

[3]  Uzi Landman,et al.  Au(67)(SR)(35) nanomolecules: characteristic size-specific optical, electrochemical, structural properties and first-principles theoretical analysis. , 2013, The journal of physical chemistry. A.

[4]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  A. Dass,et al.  Synthesis of Au130(SR)50 and Au(130-x)Ag(x)(SR)50 nanomolecules through core size conversion of larger metal clusters. , 2014, Physical chemistry chemical physics : PCCP.

[6]  Hannu Häkkinen,et al.  Time-dependent density-functional theory in the projector augmented-wave method. , 2008, The Journal of chemical physics.

[7]  U. Landman,et al.  STEM Electron Diffraction and High Resolution Images Used in the Determination of the Crystal Structure of Au144(SR)60 Cluster. , 2013, The journal of physical chemistry letters.

[8]  U. Landman,et al.  Total structure and electronic properties of the gold nanocrystal Au36(SR)24. , 2012, Angewandte Chemie.

[9]  O. Lopez-Acevedo,et al.  Chirality and electronic structure of the thiolate-protected Au38 nanocluster. , 2010, Journal of the American Chemical Society.

[10]  Peter W. Stephens,et al.  Structural evolution of larger gold clusters , 1997 .

[11]  A. Dass,et al.  Au₁₃₇(SR)₅₆ nanomolecules: composition, optical spectroscopy, electrochemistry and electrocatalytic reduction of CO₂. , 2014, Chemical Communications.

[12]  A. Fortunelli,et al.  Au₂₄(SAdm)₁₆ nanomolecules: X-ray crystal structure, theoretical analysis, adaptability of adamantane ligands to form Au₂₃(SAdm)₁₆ and Au₂₅(SAdm)₁₆, and its relation to Au₂₅(SR)₁₈. , 2014, Journal of the American Chemical Society.

[13]  A. Dass,et al.  Au103(SR)45, Au104(SR)45, Au104(SR)46 and Au105(SR)46 nanoclusters. , 2013, Nanoscale.

[14]  J. Xie,et al.  Fast Synthesis of Thiolated Au25 Nanoclusters via Protection-Deprotection Method. , 2012, The journal of physical chemistry letters.

[15]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[16]  H. Häkkinen,et al.  Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. , 2014, Journal of the American Chemical Society.

[17]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[18]  R. Jin,et al.  Cyclopentanethiolato-protected Au36(SC5H9)24 nanocluster: crystal structure and implications for the steric and electronic effects of ligand. , 2014, The journal of physical chemistry. A.

[19]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[20]  R. Jin,et al.  Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. , 2013, Journal of the American Chemical Society.

[21]  A. Dass,et al.  Au329(SR)84 nanomolecules: compositional assignment of the 76.3 kDa plasmonic faradaurates. , 2014, Analytical chemistry.

[22]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[23]  R. Jin,et al.  Total structure determination of thiolate-protected Au38 nanoparticles. , 2010, Journal of the American Chemical Society.

[24]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[25]  R. Jin,et al.  Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. , 2009, Nano letters.

[26]  R. Murray,et al.  Analytical evidence for the monolayer-protected cluster Au225[(S(CH2)5CH3)]75. , 2006, Analytical chemistry.

[27]  J. Enkovaara,et al.  Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters. , 2013, ACS nano.

[28]  Hannu Häkkinen,et al.  Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. , 2006, The journal of physical chemistry. B.

[29]  R. Whetten,et al.  Ligand Effects on the Structure and the Electronic Optical Properties of Anionic Au25(SR)18 Clusters , 2013 .

[30]  Y. Negishi,et al.  Synthesis and the Origin of the Stability of Thiolate-Protected Au130 and Au187 Clusters. , 2012, Journal of Physical Chemistry Letters.

[31]  R. Whetten,et al.  Properties of a Ubiquitous 29 kDa Au:SR Cluster Compound † , 2001 .

[32]  R. Jin,et al.  Temperature-Dependent Optical Absorption Properties of Monolayer-Protected Au25 and Au38 Clusters , 2011 .

[33]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[34]  R. Whetten,et al.  Origin of magic stability of thiolated gold clusters: a case study on Au25(SC6H13)18. , 2007, Journal of the American Chemical Society.

[35]  R. Whetten,et al.  Information on quantum states pervades the visible spectrum of the ubiquitous Au144(SR)60 gold nanocluster , 2014, Nature Communications.

[36]  H. Häkkinen,et al.  The gold-sulfur interface at the nanoscale. , 2012, Nature chemistry.

[37]  R. Whetten,et al.  Structure of the thiolated Au130 cluster. , 2013, The journal of physical chemistry. A.

[38]  N. Zheng,et al.  High-yield synthesis and crystal structure of a green Au₃₀ cluster co-capped by thiolate and sulfide. , 2014, Chemical communications.

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  A. Zoleo,et al.  Au₂₅(SEt)₁₈, a nearly naked thiolate-protected Au₂₅ cluster: structural analysis by single crystal X-ray crystallography and electron nuclear double resonance. , 2014, ACS nano.

[41]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[42]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[43]  T. Tsukuda Toward an Atomic-Level Understanding of Size-Specific Properties of Protected and Stabilized Gold Clusters , 2012 .

[44]  R. Murray,et al.  Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)(18-x)(L)(x). , 2008, Journal of the American Chemical Society.

[45]  R. Whetten,et al.  Structure and Bonding in the Ubiquitous Icosahedral Metallic Gold Cluster Au144(SR)60 , 2009 .

[46]  Greg L. Hura,et al.  Electron microscopy of gold nanoparticles at atomic resolution , 2014, Science.

[47]  R. Jin,et al.  Atomically precise gold nanocrystal molecules with surface plasmon resonance , 2012, Proceedings of the National Academy of Sciences.

[48]  J. Ilavsky,et al.  Super-stable, highly monodisperse plasmonic Faradaurate-500 nanocrystals with 500 gold atoms: Au(~500)(SR)(~120). , 2014, Journal of the American Chemical Society.

[49]  R. Jin,et al.  Nonsuperatomic [Au23(SC6H11)16]- nanocluster featuring bipyramidal Au15 kernel and trimeric Au3(SR)4 motif. , 2013, Journal of the American Chemical Society.

[50]  Y. Negishi,et al.  Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. , 2010, Chemical communications.

[51]  Y. Negishi,et al.  Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. , 2008, Journal of the American Chemical Society.

[52]  Katsuyuki Nobusada,et al.  Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. , 2005, Journal of the American Chemical Society.

[53]  A. M. Alvarez,et al.  Crystal Structures of Molecular Gold Nanocrystal Arrays , 1999 .

[54]  C. Aikens,et al.  Au36(SPh)24 nanomolecules: X-ray crystal structure, optical spectroscopy, electrochemistry, and theoretical analysis. , 2014, The journal of physical chemistry. B.