Genomics via Optical Mapping III: Contiging Genomic DNA

In this paper, we describe our algorithmic approach to constructing an alignment of (contiging) a set of restriction maps created from the images of individual genomic (uncloned) DNA molecules digested by restriction enzymes. Generally, these DNA segments are sized in the range of 1-4 Mb. The goal is to devise contiging algorithms capable of producing high-quality composite maps rapidly and in a scaleable manner. The resulting software is a key component of our physical mapping automation tools and has been used to create complete maps of various microorganisms (E. coli, P. falciparum and D. radiodurans). Experimental results match known sequence data.

[1]  Laxmi Parida,et al.  Towards constructing physical maps by optical mapping: an effective, simple, combinatorial approach , 1997, RECOMB 1997.

[2]  David C. Schwartz,et al.  Genomics via Optical Mapping II: Ordered Restriction Maps , 1997, J. Comput. Biol..

[3]  Susan R. Wilson INTRODUCTION TO COMPUTATIONAL BIOLOGY: MAPS, SEQUENCES AND GENOMES. , 1996 .

[4]  D. Schwartz,et al.  Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. , 1993, Science.

[5]  Thomas S. Anantharaman,et al.  Statistical algorithms for optical mapping of the human genome , 1997 .

[6]  Haim Kaplan,et al.  Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..

[7]  H. Aburatani,et al.  Ordered restriction endonuclease maps of yeast artificial chromosomes created by optical mapping on surfaces. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T. Anantharaman,et al.  Genomics via Optical Mapping (I): Probabilistic Analysis of Optical Mapping Models , 1998 .

[9]  Michael S. Waterman,et al.  Introduction to Computational Biology: Maps, Sequences and Genomes , 1998 .

[10]  D. Schwartz,et al.  Optical mapping of site-directed cleavages on single DNA molecules by the RecA-assisted restriction endonuclease technique. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[11]  E. Dimalanta,et al.  Mapping the genome one molecule at a time — optical mapping , 1995, Nature.

[12]  John Carbon,et al.  A colony bank containing synthetic CoI EI hybrid plasmids representative of the entire E. coli genome , 1976, Cell.

[13]  Thomas S. Anantharaman,et al.  Genomics via optical mapping II (A): Restriction maps form partial molecules and variations , 1998 .

[14]  E. Lander,et al.  Genomic mapping by fingerprinting random clones: a mathematical analysis. , 1988, Genomics.

[15]  J. Venter,et al.  Optical mapping of Plasmodium falciparum chromosome 2. , 1999, Genome research.

[16]  D. Schwartz,et al.  Optical mapping of lambda bacteriophage clones using restriction endonucleases , 1995, Nature Genetics.

[17]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[18]  T. Anantharaman,et al.  High-resolution restriction maps of bacterial artificial chromosomes constructed by optical mapping. , 1998, Proceedings of the National Academy of Sciences of the United States of America.