Study on joint Bayesian model selection and parameter estimation method of GTD model

The Bayesian method is applied to the joint model selection and parameter estimation problem of the GTD model. An algorithm based on RJ-MCMC is designed. This algorithm not only improves the model order selection and parameter estimation accuracy by exploiting the priori information of the GTD model, but also solves the mixed parameter estimation problem of the GTD model properly. Its performance is tested using numerical simulations and data generated by electromagnetic code. It is shown that it gives good model order selection and parameter estimation results, especially for low SNR, closely-spaced components and short data situations.

[1]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[2]  G. Larry Bretthorst,et al.  Bayesian analysis. II. Signal detection and model selection , 1990 .

[3]  Petar M. Djuric,et al.  A model selection rule for sinusoids in white Gaussian noise , 1996, IEEE Trans. Signal Process..

[4]  L. Dou,et al.  Bayesian inference and Gibbs sampling in spectral analysis and parameter estimation: II , 1995 .

[5]  M. J. Gerry,et al.  A GTD-based parametric model for radar scattering , 1995 .

[6]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[7]  P. Djurić,et al.  Bayesian spectrum estimation of harmonic signals , 1995, IEEE Signal Processing Letters.

[8]  T. Kirubarajan,et al.  Wideband array signal processing using MCMC methods , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[9]  Christophe Andrieu,et al.  Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC , 1999, IEEE Trans. Signal Process..

[10]  James P. Reilly,et al.  Wideband array signal processing using MCMC methods , 2005, IEEE Trans. Signal Process..

[11]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[12]  William J. Fitzgerald,et al.  Joint DOA, frequency and model order estimation in additive /spl alpha/-stable noise , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[13]  Marvin H. J. Guber Bayesian Spectrum Analysis and Parameter Estimation , 1988 .

[14]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[15]  G. L. Bretthorst Bayesian analysis. I. Parameter estimation using quadrature NMR models , 1990 .

[16]  James P. Reilly,et al.  Reversible jump MCMC for joint detection and estimation of sources in colored noise , 2002, IEEE Trans. Signal Process..