A New Nonlinear Coupled Analysis Tool for Floating Structures

For the global performance analysis of a floater, the traditional semi-coupled method models mooring lines/risers as nonlinear massless springs and ignores 1) the inertial effects from mooring lines/risers, 2) the current and wave load effects on mooring lines/risers, and 3) the dynamic interaction between mooring lines/risers and the floater. However, these effects are deemed critical for deepwater and ultra deepwater floating structures as they may have a significant impact on the floaters’ motions and mooring line/riser tensions.This paper presents the development and verification of a time-domain nonlinear coupled analysis tool, MLTSIM-ROD, which is an integration of a recently developed 3D rod dynamic program, ROD3D, with the well-calibrated floater global performance analysis program, MULTISIM (Ref [9]). The ROD3D was developed based on a nonlinear finite element method and merged with MULTISIM by matching the forces and displacements of mooring lines/risers with the floater at their connections. MLTSIM-ROD can thus predict the floater’s large displacement/rotation motions and mooring line/riser tensions including all the coupled effects between the floater and mooring lines/risers. In this paper, global performance predictions for a SPAR in the Gulf of Mexico in deepwater were carried out using MLTSIM-ROD. The results were then verified with those from other coupled analysis programs.The paper also presents the results of motions and mooring line/riser tensions of the SPAR using both the coupled and semi-coupled methods. The results from the coupled and semi-coupled analyses indicate that the floater’s motions and mooring line/riser tensions could be significantly influenced by the dynamic interactions between the floater and mooring lines/risers. Hence, the coupled method needs to be considered for deepwater floating structures.Copyright © 2012 by ASME