On Intrinsic Cramér-Rao Bounds for Riemannian Submanifolds and Quotient Manifolds

We study Cramér-Rao bounds (CRB's) for estimation problems on Riemannian manifolds. In [S. T. Smith, “Covariance, Subspace, and Intrinsic Cramér-Rao bounds,” IEEE Trans. Signal Process., vol. 53, no. 5, 1610–1630, 2005], the author gives intrinsic CRB's in the form of matrix inequalities relating the covariance of estimators and the Fisher information of estimation problems. We focus on estimation problems whose parameter space <formula formulatype="inline"><tex Notation="TeX">$\bar{\cal P}$</tex></formula> is a Riemannian submanifold or a Riemannian quotient manifold of a parent space <formula formulatype="inline"><tex Notation="TeX">${\cal P}$</tex></formula>, that is, estimation problems on manifolds with either deterministic constraints or ambiguities. The CRB's in the aforementioned reference would be expressed w.r.t. bases of the tangent spaces to <formula formulatype="inline"><tex Notation="TeX">$\bar{\cal P}$</tex></formula>. In some cases though, it is more convenient to express covariance and Fisher information w.r.t. bases of the tangent spaces to <formula formulatype="inline"><tex Notation="TeX">${\cal P}$</tex></formula>. We give CRB's w.r.t. such bases expressed in terms of the geodesic distances on the parameter space. The bounds are valid even for singular Fisher information matrices. In two examples, we show how the CRB's for synchronization problems (including a type of sensor network localization problem) differ in the presence or absence of anchors, leading to bounds for estimation on either submanifolds or quotient manifolds with very different interpretations.

[1]  John M. Lee Riemannian Manifolds: An Introduction to Curvature , 1997 .

[2]  William Moran,et al.  Estimation and Registration on Graphs , 2010, ArXiv.

[3]  João M. F. Xavier,et al.  Intrinsic variance lower bound (IVLB): an extension of the Cramer-Rao bound to Riemannian manifolds , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[4]  H. V. Trees,et al.  Covariance, Subspace, and Intrinsic CramrRao Bounds , 2007 .

[5]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[6]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[7]  René Vidal,et al.  Distributed image-based 3-D localization of camera sensor networks , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[8]  João M. F. Xavier,et al.  The Riemannian geometry of certain parameter estimation problems with singular Fisher information matrices , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  S.T. Smith,et al.  Covariance, subspace, and intrinsic Crame/spl acute/r-Rao bounds , 2005, IEEE Transactions on Signal Processing.

[10]  Yonina C. Eldar,et al.  On the Constrained CramÉr–Rao Bound With a Singular Fisher Information Matrix , 2009, IEEE Signal Processing Letters.

[11]  B. C. Ng,et al.  On the Cramer-Rao bound under parametric constraints , 1998, IEEE Signal Processing Letters.

[12]  Louis L. Scharf,et al.  Geometry of the Cramer-Rao bound , 1993, Signal Process..

[13]  Vincent D. Blondel,et al.  Cramér-Rao bounds for synchronization of rotations , 2012, ArXiv.

[14]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[15]  João Pedro Hespanha,et al.  Optimal estimation on the graph cycle space , 2010, Proceedings of the 2010 American Control Conference.

[16]  B. O'neill Semi-Riemannian Geometry With Applications to Relativity , 1983 .

[17]  François Fouss,et al.  The Principal Components Analysis of a Graph, and Its Relationships to Spectral Clustering , 2004, ECML.

[18]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[19]  A. Singer Angular Synchronization by Eigenvectors and Semidefinite Programming. , 2009, Applied and computational harmonic analysis.

[20]  Thomas L. Marzetta,et al.  Parameter estimation problems with singular information matrices , 2001, IEEE Trans. Signal Process..

[21]  Pierre-Antoine Absil,et al.  Algorithm comparison for Karcher mean computation of rotation matrices and diffusion tensors , 2011, 2011 19th European Signal Processing Conference.

[22]  Jonathan H. Manton,et al.  A globally convergent numerical algorithm for computing the centre of mass on compact Lie groups , 2004, ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004..

[23]  Alfred O. Hero,et al.  Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.

[24]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .