Generating approximate parametric roots of parametric polynomials

Built upon a ground field is the parametric field, the Puiseux field, of semi-terminating formal fractional power series. A parametric polynomial is a polynomial with coefficients in the parametric field, and roots of parametric polynomials are parametric. For a parametric polynomial with nonterminating parametric coefficients and a target accuracy, using sensitivity of the Newton Polygon process, a complete set of approximate parametric roots, each meeting target accuracy, is generated. All arguments are algebraic, from the inside out, self-contained, penetrating, and uniform in that only the Newton Polygon process is used, for both preprocessing and intraprocessing. A complexity analysis over ground field operations is developed; setting aside root generation for ground field polynomials, but bounding such, polynomial bounds are established in the degree of the parametric polynomial and the target accuracy.

[1]  V. Puiseux Recherches sur les fonctions algébriques. , 1850 .

[2]  R. J. Walker Algebraic curves , 1950 .

[3]  H. Cartan Elementary Theory of Analytic Functions of One or Several Complex Variables , 1963 .

[4]  D. T. Whiteside,et al.  The mathematical papers of Isaac Newton , 1967 .

[5]  M. M. Vaĭnberg,et al.  Theory of branching of solutions of non-linear equations , 1974 .

[6]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[7]  Elon Kohlberg,et al.  The Asymptotic Theory of Stochastic Games , 1976, Math. Oper. Res..

[8]  H. T. Kung,et al.  All Algebraic Functions Can Be Computed Fast , 1978, JACM.

[9]  J. Maurer Puiseux expansion for space curves , 1980 .

[10]  Alexander L. Chistov Polynomial Complexity of the Newton-Puiseux Algorithm , 1986, MFCS.

[11]  D. V. Chudnovsky,et al.  On expansion of algebraic functions in power and Puiseux series, I , 1986, J. Complex..

[12]  J. Stillwell,et al.  Plane Algebraic Curves , 1986 .

[13]  J. P. G. Henry,et al.  Complexity of computation of embedded resolution of algebraic curves , 1987, EUROCAL.

[14]  Tien-Yien Li Solving polynomial systems , 1987 .

[15]  Uriel G. Rothblum,et al.  A Theory on Extending Algorithms for Parametric Problems , 1989, Math. Oper. Res..

[16]  D. Duval Rational Puiseux expansions , 1989 .

[17]  J. Verschelde,et al.  Homotopies exploiting Newton polytopes for solving sparse polynomial systems , 1994 .

[18]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[19]  U. Rothblum,et al.  Perron-Frobenius theory over real closed fields and fractional power series expansions , 1995 .

[20]  B. Sturmfels Polynomial Equations and Convex Polytopes , 1998 .

[21]  P. G. Walsh,et al.  A polynomial-time complexity bound for the computation of the singular part of a Puiseux expansion of an algebraic function , 2000, Math. Comput..

[22]  M. Kojima,et al.  Computing all nonsingular solutions of cyclic- n polynomial using polyhedral homotopy continuation methods , 2003 .

[23]  Tien-Yien Li Numerical Solution of Polynomial Systems by Homotopy Continuation Methods , 2003 .

[24]  J. M. Rojas SPARSE POLYNOMIAL SYSTEMS OVER LOCAL FIELDS , 2010 .

[25]  Danko Adrovic Solving Polynomial Systems With Tropical Methods , 2012 .