Presburger Arithmetic with algebraic scalar multiplications

We consider Presburger arithmetic (PA) extended by scalar multiplication by an algebraic irrational number $\alpha$, and call this extension $\alpha$-Presburger arithmetic ($\alpha$-PA). We show that the complexity of deciding sentences in $\alpha$-PA is substantially harder than in PA. Indeed, when $\alpha$ is quadratic and $r\geq 4$, deciding $\alpha$-PA sentences with $r$ alternating quantifier blocks and at most $c\ r$ variables and inequalities requires space at least $K 2^{\cdot^{\cdot^{\cdot^{2^{C\ell(S)}}}}}$ (tower of height $r-3$), where the constants $c, K, C>0$ only depend on $\alpha$, and $\ell(S)$ is the length of the given $\alpha$-PA sentence $S$. Furthermore deciding $\exists^{6}\forall^{4}\exists^{11}$ $\alpha$-PA sentences with at most $k$ inequalities is PSPACE-hard, where $k$ is another constant depending only on~$\alpha$. When $\alpha$ is non-quadratic, already four alternating quantifier blocks suffice for undecidability of $\alpha$-PA sentences.

[1]  Alexander Barvinok,et al.  The complexity of generating functions for integer points in polyhedra and beyond , 2006 .

[2]  Thomas Wilke,et al.  Automata logics, and infinite games: a guide to current research , 2002 .

[3]  B. Scarpellini Complexity of subcases of Presburger arithmetic , 1984 .

[4]  Turlough Neary,et al.  Small fast universal Turing machines , 2006, Theor. Comput. Sci..

[5]  Kevin Woods,et al.  Rational generating functions and lattice point sets. , 2004 .

[6]  Philipp Hieronymi,et al.  EXPANSIONS OF THE ORDERED ADDITIVE GROUP OF REAL NUMBERS BY TWO DISCRETE SUBGROUPS , 2014, The Journal of Symbolic Logic.

[7]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[8]  Larry Joseph Stockmeyer,et al.  The complexity of decision problems in automata theory and logic , 1974 .

[9]  Volker Weispfenning,et al.  Mixed real-integer linear quantifier elimination , 1999, ISSAC '99.

[10]  Leonard M. Adleman,et al.  NP-Complete Decision Problems for Binary Quadratics , 1978, J. Comput. Syst. Sci..

[11]  A. Ostrowski Bemerkungen zur Theorie der Diophantischen Approximationen , 1922 .

[12]  Albert R. Meyer,et al.  WEAK MONADIC SECOND ORDER THEORY OF SUCCESSOR IS NOT ELEMENTARY-RECURSIVE , 1973 .

[13]  M. Fischer,et al.  SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .

[14]  M. W. Shields An Introduction to Automata Theory , 1988 .

[15]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[16]  Uwe Schöning Complexity of Presburger Arithmetic with Fixed Quantifier Dimension , 1997, Theory Comput. Syst..

[17]  Wolfgang Thomas Finite Automata and the Analysis of Infinite Transition Systems , 2012, Modern Applications of Automata Theory.

[18]  Ravi Kannan Test Sets for Integer Programs, 0_ Sentences , 1990, Polyhedral Combinatorics.

[19]  Philipp Hieronymi,et al.  Ostrowski Numeration Systems, Addition, and Finite Automata , 2014, Notre Dame J. Formal Log..

[20]  Martin Fürer,et al.  The Complexity of Presburger Arithmetic with Bounded Quantifier Alternation Depth , 1982, Theor. Comput. Sci..

[21]  Michael A. Tychonievich,et al.  Interpreting the projective hierarchy in expansions of the real line , 2012, 1203.6299.

[22]  Joseph H. Silverman,et al.  A Friendly Introduction to Number Theory , 1996 .

[23]  Igor Pak,et al.  Short Presburger Arithmetic Is Hard , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[24]  Klaus Reinhardt,et al.  The Complexity of Translating Logic to Finite Automata , 2001, Automata, Logics, and Infinite Games.

[25]  Erich Grädel The complexity of subclasses of logical theories , 1987 .

[26]  C. D. Olds,et al.  Continued Fractions , 1992 .

[27]  Anil Nerode,et al.  Automata theory and its applications , 2001 .

[28]  Leonid Khachiyan,et al.  Integer Optimization on Convex Semialgebraic Sets , 2000, Discret. Comput. Geom..

[29]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[30]  Christopher L. Miller Expansions of Dense Linear Orders with The Intermediate Value Property , 2001, J. Symb. Log..

[31]  William J. Cook,et al.  On integer points in polyhedra , 1992, Comb..

[32]  Derek C. Oppen,et al.  A 2^2^2^pn Upper Bound on the Complexity of Presburger Arithmetic , 1978, J. Comput. Syst. Sci..

[33]  Philipp Hieronymi When is scalar multiplication decidable? , 2019, Ann. Pure Appl. Log..

[34]  Volker Weispfenning,et al.  Complexity and uniformity of elimination in Presburger arithmetic , 1997, ISSAC.

[35]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[36]  Donald W. Loveland,et al.  Presburger arithmetic with bounded quantifier alternation , 1978, STOC.