Distributionally robust chance-constrained games: existence and characterization of Nash equilibrium

We consider an n-player finite strategic game. The payoff vector of each player is a random vector whose distribution is not completely known. We assume that the distribution of a random payoff vector of each player belongs to a distributional uncertainty set. We define a distributionally robust chance-constrained game using worst-case chance constraint. We consider two types of distributional uncertainty sets. We show the existence of a mixed strategy Nash equilibrium of a distributionally robust chance-constrained game corresponding to both types of distributional uncertainty sets. For each case, we show a one-to-one correspondence between a Nash equilibrium of a game and a global maximum of a certain mathematical program.

[1]  Huifu Xu,et al.  Stochastic Nash equilibrium problems: sample average approximation and applications , 2013, Comput. Optim. Appl..

[2]  Oualid Jouini,et al.  Existence of Nash equilibrium for chance-constrained games , 2016, Oper. Res. Lett..

[3]  Uday V. Shanbhag,et al.  On the Characterization of Solution Sets of Smooth and Nonsmooth Convex Stochastic Nash Games , 2011, SIAM J. Optim..

[4]  Ilan Adler The equivalence of linear programs and zero-sum games , 2013, Int. J. Game Theory.

[5]  Abdel Lisser,et al.  A second-order cone programming approach for linear programs with joint probabilistic constraints , 2012, Oper. Res. Lett..

[6]  Y. Smeers,et al.  A stochastic version of a Stackelberg-Nash-Cournot equilibrium model , 1997 .

[7]  Jason J. Lepore Cournot outcomes under Bertrand–Edgeworth competition with demand uncertainty , 2012 .

[8]  Chris Field,et al.  Solution of a Satisficing Model for Random Payoff Games , 1972 .

[9]  A. Charnes,et al.  Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints , 1963 .

[10]  Fred Phillips,et al.  Systems and Management Science by Extremal Methods , 1992 .

[11]  Tamás Terlaky,et al.  A Survey of the S-Lemma , 2007, SIAM Rev..

[12]  A. Wambach Bertrand competition under cost uncertainty , 1999 .

[13]  Abraham Charnes,et al.  Zero-Zero Chance-Constrained Games , 1968 .

[14]  B. Kouvaritakis,et al.  Gaming strategy for electric power with random demand , 2005, IEEE Transactions on Power Systems.

[15]  A. Shapiro ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .

[16]  Huifu Xu,et al.  A Stochastic Multiple-Leader Stackelberg Model: Analysis, Computation, and Application , 2009, Oper. Res..

[17]  Tiantai Song,et al.  On Random Payoff Matrix Games , 1992 .

[18]  H. Kuk On equilibrium points in bimatrix games , 1996 .

[19]  Roger A. Blau,et al.  Random-Payoff Two-Person Zero-Sum Games , 1974, Oper. Res..

[20]  O. Mangasarian,et al.  Two-person nonzero-sum games and quadratic programming , 1964 .

[21]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. Mazumdar,et al.  Cournot Prices Considering Generator Availability and Demand Uncertainty , 2007, IEEE Transactions on Power Systems.

[23]  Laurent El Ghaoui,et al.  Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach , 2003, Oper. Res..

[24]  O. H. Brownlee,et al.  ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .

[25]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[26]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[27]  S. Kakutani A generalization of Brouwer’s fixed point theorem , 1941 .

[28]  Samuel Eilon,et al.  On the theory of games , 1967 .

[29]  R. Baldick,et al.  Solving three-player games by the matrix approach with application to an electric power market , 2003 .

[30]  Fabio Raciti,et al.  Variational Inequality Approach to Stochastic Nash Equilibrium Problems with an Application to Cournot Oligopoly , 2014, J. Optim. Theory Appl..

[31]  R. Baldick,et al.  Short-term electricity market auction game analysis: uniform and pay-as-bid pricing , 2004, IEEE Transactions on Power Systems.

[32]  Abdel Lisser,et al.  Distributionally Robust Stochastic Knapsack Problem , 2014, SIAM J. Optim..

[33]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[34]  Abdel Lisser,et al.  Random-payoff two-person zero-sum game with joint chance constraints , 2016, Eur. J. Oper. Res..

[35]  Hamidreza Zareipour,et al.  Impact of wind integration on electricity markets: a chance‐constrained Nash Cournot model , 2013 .

[36]  R. Wets,et al.  Stochastic programming , 1989 .

[37]  Masao Fukushima,et al.  Semidefinite complementarity reformulation for robust Nash equilibrium problems with Euclidean uncertainty sets , 2012, J. Glob. Optim..

[38]  Katta G. Murty,et al.  Nonlinear Programming Theory and Algorithms , 2007, Technometrics.