Nanoarchitectured Array Electrodes for Rechargeable Lithium‐ and Sodium‐Ion Batteries

Rechargeable ion batteries have contributed immensely to shaping the modern world and been seriously considered for the efficient storage and utilization of intermittent renewable energies. To fulfill their potential in the future market, superior battery performance of high capacity, great rate capability, and long lifespan is undoubtedly required. In the past decade, along with discovering new electrode materials, the focus has been shifting more and more toward rational electrode designs because the performance is intimately connected to the electrode architectures, particularly their designs at the nanoscale that can alleviate the reliance on the materials' intrinsic nature. The utilization of nanoarchitectured arrays in the design of electrodes has been proven to significantly improve the battery performance. A comprehensive summary of the structural features and fabrications of the nanoarchitectured array electrodes is provided, and some of the latest achievements in the area of both lithium- and sodium-ion batteries are highlighted. Finally, future challenges and opportunities that would allow further development of such advanced electrode configuration are discussed.

[1]  K. Fung,et al.  Fabrication and characterization of Cu2O nanorod arrays and their electrochemical performance in Li-ion batteries , 2006 .

[2]  Young-Min Choi,et al.  Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries. , 2012, ACS nano.

[3]  Qiaobao Zhang,et al.  Improved lithium ion battery performance by mesoporous Co3O4 nanosheets grown on self-standing NiSix nanowires on nickel foam , 2014 .

[4]  Z. Du,et al.  Nanocone-arrays supported tin-based anode materials for lithium-ion battery , 2011 .

[5]  D. He,et al.  Building a Ni3S2 nanotube array and investigating its application as an electrode for lithium ion batteries. , 2014, Chemical communications.

[6]  Deren Yang,et al.  Cu–Ge core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries , 2012 .

[7]  J. Yin,et al.  Highly porous Fe3O4–Fe nanowires grown on C/TiC nanofiber arrays as the high performance anode of lithium-ion batteries , 2014 .

[8]  Wenhua Zuo,et al.  Fabrication and Shell Optimization of Synergistic TiO2‐MoO3 Core–Shell Nanowire Array Anode for High Energy and Power Density Lithium‐Ion Batteries , 2015 .

[9]  Justin C. Lytle,et al.  Photonic Crystal Structures as a Basis for a Three‐Dimensionally Interpenetrating Electrochemical‐Cell System , 2006 .

[10]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[11]  X. Lou,et al.  Proceedings of the Chemical Society. March 1961 , 1961 .

[12]  Charles R. Martin,et al.  Template Synthesis of Electronically Conductive Polymer Nanostructures , 1995 .

[13]  Mao-Sung Wu,et al.  Self-Assembly of NiO-Coated ZnO Nanorod Electrodes with Core–Shell Nanostructures as Anode Materials for Rechargeable Lithium-Ion Batteries , 2013 .

[14]  Xueping Gao,et al.  Nanostructured V2O5 arrays on metal substrate as binder free cathode materials for sodium-ion batteries , 2015 .

[15]  Marca M. Doeff,et al.  Rechargeable Na/Na[sub x]CoO[sub 2] and Na[sub 15]Pb[sub 4]/Na[sub x]CoO[sub 2] polymer electrolyte cells , 1993 .

[16]  Daniel P. Abraham,et al.  Observation of Microstructural Evolution in Li Battery Cathode Oxide Particles by In Situ Electron Microscopy , 2013 .

[17]  Xingcheng Xiao,et al.  Dual Phase Li4Ti5O12–TiO2 Nanowire Arrays As Integrated Anodes For High-rate Lithium-ion Batteries , 2014 .

[18]  Ruoxu Lin,et al.  Nickel Nanocone‐Array Supported Silicon Anode for High‐Performance Lithium‐Ion Batteries , 2010, Advanced materials.

[19]  Y. Bando,et al.  Coaxial Cu-Si@C array electrodes for high-performance lithium ion batteries. , 2011, Chemical communications.

[20]  C. F. Ng,et al.  Oxide nanostructures hyperbranched with thin and hollow metal shells for high-performance nanostructured battery electrodes. , 2014, Small.

[21]  T. Jow,et al.  The Role of Conductive Polymers in Alkali‐Metal Secondary Electrodes , 1987 .

[22]  M. Chi,et al.  Self-Aligned Cu-Si Core-Shell Nanowire Array as a High-Performance Anode for Li-Ion Batteries , 2012 .

[23]  P. Ajayan,et al.  Flexible carbon nanotube--Cu2O hybrid electrodes for li-ion batteries. , 2011, Small.

[24]  Bin Wang,et al.  Synergistically engineered self-standing silicon/carbon composite arrays as high performance lithium battery anodes , 2015 .

[25]  Young‐Chang Joo,et al.  A Bendable Li‐Ion Battery with a Nano‐Hairy Electrode: Direct Integration Scheme on the Polymer Substrate , 2015 .

[26]  B. Zhang,et al.  Three-dimensional nanoarchitecture of Sn–Sb–Co alloy as an anode of lithium-ion batteries with excellent lithium storage performance , 2012 .

[27]  Haihui Wang,et al.  Binder-free Co–CoOx nanowire arrays for lithium ion batteries with excellent rate capability and ultra-long cycle life , 2015 .

[28]  J. Tu,et al.  Co3O4–C core–shell nanowire array as an advanced anode material for lithium ion batteries , 2012 .

[29]  K. Awaga,et al.  An antiaromatic electrode-active material enabling high capacity and stable performance of rechargeable batteries. , 2014, Angewandte Chemie.

[30]  X. Lou,et al.  Controlled synthesis of hierarchical CoxMn3−xO4 array micro-/nanostructures with tunable morphology and composition as integrated electrodes for lithium-ion batteries , 2013 .

[31]  Sang Bok Lee,et al.  An all-in-one nanopore battery array. , 2014, Nature nanotechnology.

[32]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[33]  Qingliu Wu,et al.  Aligned TiO2 Nanotube Arrays As Durable Lithium-Ion Battery Negative Electrodes , 2012 .

[34]  C. R. Martin,et al.  Membrane-Based Synthesis of Nanomaterials , 1996 .

[35]  C. Xiong,et al.  Novel aligned sodium vanadate nanowire arrays for high-performance lithium-ion battery electrodes , 2015 .

[36]  D. He,et al.  Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes , 2012 .

[37]  Deren Yang,et al.  Cu–Si1−xGex core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries , 2012 .

[38]  Y. Lei,et al.  Facile Transferring of Wafer-Scale Ultrathin Alumina Membranes onto Substrates for Nanostructure Patterning. , 2015, ACS nano.

[39]  L. Croguennec,et al.  Recent achievements on inorganic electrode materials for lithium-ion batteries. , 2015, Journal of the American Chemical Society.

[40]  Qiuyun Ouyang,et al.  Three-dimensional hierarchical MoS2 nanoflake array/carbon cloth as high-performance flexible lithium-ion battery anodes , 2014 .

[41]  Xiangwu Zhang,et al.  Aligned Carbon Nanotube‐Silicon Sheets: A Novel Nano‐architecture for Flexible Lithium Ion Battery Electrodes , 2013, Advanced materials.

[42]  Pierre-Louis Taberna,et al.  Nanoarchitectured 3D Cathodes for Li‐Ion Microbatteries , 2010, Advanced materials.

[43]  Jian Jiang,et al.  Co–Fe layered double hydroxide nanowall array grown from an alloy substrate and its calcined product as a composite anode for lithium-ion batteries , 2011 .

[44]  Kepeng Song,et al.  Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. , 2014, Nano letters.

[45]  A. Manthiram,et al.  Mesoporous TiO2‐Sn/C Core‐Shell Nanowire Arrays as High‐Performance 3D Anodes for Li‐Ion Batteries , 2014 .

[46]  Deren Yang,et al.  Vertically ordered Ni₃Si₂/Si nanorod arrays as anode materials for high-performance Li-ion batteries. , 2012, Nanoscale.

[47]  G. M. Rao,et al.  Morphology and electrochemical performance of graphene nanosheet array for Li-ion thin film battery , 2013 .

[48]  D. Mitlin,et al.  Silicon nanowire core aluminum shell coaxial nanocomposites for lithium ion battery anodes grown with and without a TiN interlayer , 2012 .

[49]  Jaephil Cho,et al.  3D amorphous silicon on nanopillar copper electrodes as anodes for high-rate lithium-ion batteries. , 2014, ACS nano.

[50]  Adam Heller,et al.  Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material , 2013 .

[51]  Xinhua Xu,et al.  One-step electrochemical growth of a three-dimensional Sn-Ni@PEO nanotube array as a high performance lithium-ion battery anode. , 2014, ACS applied materials & interfaces.

[52]  Hua Zhang,et al.  Facile fabrication of hierarchical ZnCo2O4/NiO core/shell nanowire arrays with improved lithium-ion battery performance. , 2014, Nanoscale.

[53]  H. Xia,et al.  Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. , 2010, ACS nano.

[54]  Huaping Zhao,et al.  Self‐Supported Metallic Nanopore Arrays with Highly Oriented Nanoporous Structures as Ideally Nanostructured Electrodes for Supercapacitor Applications , 2014, Advanced materials.

[55]  Zhiyong Fan,et al.  Efficient light absorption with integrated nanopillar/nanowell arrays for three-dimensional thin-film photovoltaic applications. , 2013, ACS nano.

[56]  Shaohui Li,et al.  Porous Li4Ti5O12–TiO2 nanosheet arrays for high-performance lithium-ion batteries , 2015 .

[57]  Ruizhi Li,et al.  Carbon‐Stabilized High‐Capacity Ferroferric Oxide Nanorod Array for Flexible Solid‐State Alkaline Battery–Supercapacitor Hybrid Device with High Environmental Suitability , 2015 .

[58]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[59]  Jae‐Hun Kim,et al.  Fabrication and electrochemical characterization of a vertical array of MnO2 nanowires grown on silicon substrates as a cathode material for lithium rechargeable batteries , 2008 .

[60]  Jian Jiang,et al.  Direct Synthesis of CoO Porous Nanowire Arrays on Ti Substrate and Their Application as Lithium-Ion Battery Electrodes , 2010 .

[61]  Y. Chui,et al.  Si/Ge core-shell nanoarrays as the anode material for 3D lithium ion batteries , 2013 .

[62]  Yang Wei,et al.  Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high-performance anodes for lithium ion batteries. , 2013, Nano letters.

[63]  Controlled facile synthesis of hierarchical CuO@MnO2 core–shell nanosheet arrays for high-performance lithium-ion battery , 2015 .

[64]  X. Lou,et al.  TiO2 nanotube arrays grafted with Fe2O3 hollow nanorods as integrated electrodes for lithium-ion batteries , 2013 .

[65]  Katja Kretschmer,et al.  Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries , 2015 .

[66]  Matthew D. Goodman,et al.  Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes. , 2015, ACS nano.

[67]  Min Gyu Kim,et al.  Reversible and High‐Capacity Nanostructured Electrode Materials for Li‐Ion Batteries , 2009 .

[68]  Chunsheng Wang,et al.  Self-assembled Ni/TiO2 nanocomposite anodes synthesized via electroless plating and atomic layer deposition on biological scaffolds. , 2010, Chemical communications.

[69]  D. Mitlin,et al.  Array geometry dictates electrochemical performance of Ge nanowire lithium ion battery anodes , 2014 .

[70]  Haitao Zhou,et al.  3D aligned-carbon-nanotubes@Li2FeSiO4 arrays as high rate capability cathodes for Li-ion batteries , 2013, Nanotechnology.

[71]  Shikuan Yang,et al.  Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications. , 2011, Nanoscale.

[72]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[73]  Y. Lei,et al.  Degenerating Plasmonic Modes to Enhance the Performance of Surface Plasmon Resonance for Application in Solar Energy Conversion , 2015 .

[74]  Y. Lei,et al.  Realizing ordered arrays of nanostructures: A versatile platform for converting and storing energy efficiently , 2016 .

[75]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[76]  W. L. Worrell,et al.  A thermodynamic study of sodium-intercalated TaS2 and TiS2 , 1979 .

[77]  B. Hwang,et al.  Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries , 2010 .

[78]  Toshiaki Tamamura,et al.  Highly ordered nanochannel-array architecture in anodic alumina , 1997 .

[79]  Chunsheng Wang,et al.  Tin-coated viral nanoforests as sodium-ion battery anodes. , 2013, ACS nano.

[80]  Shikuan Yang,et al.  Surface patterning using templates: concept, properties and device applications. , 2011, Chemical Society reviews.

[81]  Yudi Mo,et al.  Bunched akaganeite nanorod arrays: Preparation and high-performance for flexible lithium-ion batteries , 2015 .

[82]  Y. Lei,et al.  A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO 2 , 2014 .

[83]  D. Xia,et al.  Tailoring CoO–ZnO nanorod and nanotube arrays for Li-ion battery anode materials , 2013 .

[84]  Yong Lei,et al.  Template-directed construction of nanostructure arrays for highly-efficient energy storage and conversion , 2015 .

[85]  Yang Xu,et al.  Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting. , 2014, ACS nano.

[86]  Chongwu Zhou,et al.  Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. , 2012, Nano letters.

[87]  Sang Bok Lee,et al.  Nanotubular metal-insulator-metal capacitor arrays for energy storage. , 2009, Nature nanotechnology.

[88]  U. Paik,et al.  Hydrogen treated, cap-opened Si nanotubes array anode for high power lithium ion battery , 2013 .

[89]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[90]  Huaping Zhao,et al.  Highly Controllable Surface Plasmon Resonance Property by Heights of Ordered Nanoparticle Arrays Fabricated via a Nonlithographic Route. , 2015, ACS nano.

[91]  Jaephil Cho,et al.  Tunable Internal and Surface Structures of the Bifunctional Oxygen Perovskite Catalysts , 2015 .

[92]  Huaping Zhao,et al.  Manipulation of Disodium Rhodizonate: Factors for Fast‐Charge and Fast‐Discharge Sodium‐Ion Batteries with Long‐Term Cyclability , 2016 .

[93]  X. Lou,et al.  Growth of SnO2 nanosheet arrays on various conductive substrates as integrated electrodes for lithium-ion batteries , 2014 .

[94]  Xianguang Miao,et al.  Three-dimensional Mn-doped Zn2GeO4 nanosheet array hierarchical nanostructures anchored on porous Ni foam as binder-free and carbon-free lithium-ion battery anodes with enhanced electrochemical performance , 2015 .

[95]  Shuang Yuan,et al.  Engraving Copper Foil to Give Large‐Scale Binder‐Free Porous CuO Arrays for a High‐Performance Sodium‐Ion Battery Anode , 2014, Advanced materials.

[96]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[97]  Arava Leela Mohana Reddy,et al.  Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. , 2009, Nano letters.

[98]  Xiulin Fan,et al.  Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries , 2015 .

[99]  Zeheng Yang,et al.  A new lithium-ion battery: CuO nanorod array anode versus spinel LiNi0.5Mn1.5O4 cathode , 2015 .

[100]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[101]  Naiqing Zhang,et al.  Self-supported, binder-free 3D hierarchical iron fluoride flower-like array as high power cathode material for lithium batteries , 2014 .

[102]  Xiangyang Zhou,et al.  Hierarchical NiCo2O4 nanowire arrays on Ni foam as an anode for lithium-ion batteries , 2015 .

[103]  X. Lou,et al.  Ordered macroporous BiVO4 architectures with controllable dual porosity for efficient solar water splitting. , 2013, Angewandte Chemie.

[104]  B. Hwang,et al.  Oriented growth of large-scale nickel sulfide nanowire arrays via a general solution route for lithium-ion battery cathode applications , 2009 .

[105]  Jun Chen,et al.  Organic Li4C8H2O6 nanosheets for lithium-ion batteries. , 2013, Nano letters.

[106]  L. Bendersky,et al.  Magnesium and magnesium-silicide coated silicon nanowire composite anodes for lithium-ion batteries , 2013 .

[107]  B. Wei,et al.  Materials and Structures for Stretchable Energy Storage and Conversion Devices , 2014, Advanced materials.

[108]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[109]  Xiangyang Zhou,et al.  One-dimensional NiCo2O4 nanowire arrays grown on nickel foam for high-performance lithium-ion batteries , 2015 .

[110]  Oleg G. Poluektov,et al.  Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells , 2012 .

[111]  Jung Min Lee,et al.  Facile synthesis of free-standing silicon membranes with three-dimensional nanoarchitecture for anodes of lithium ion batteries. , 2013, Nano letters.

[112]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[113]  Qiaobao Zhang,et al.  Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries , 2014 .

[114]  P. J. Sebastian,et al.  The preparation of NaV1- xCrxPO4F cathode materials for sodium-ion battery , 2006 .

[115]  Junhong Chen,et al.  Novel hybrid carbon nanofiber/highly branched graphene nanosheet for anode materials in lithium-ion batteries. , 2014, ACS applied materials & interfaces.

[116]  H. Shimotake,et al.  Progress in batteries and solar cells - Volume 6 , 1978 .

[117]  L. Niu,et al.  Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries , 2015 .

[118]  Henghui Zhou,et al.  Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life , 2014 .

[119]  Yung-Cheng Lee,et al.  Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications. , 2012, Nano letters.

[120]  Zhipeng Huang,et al.  Metal‐Assisted Chemical Etching of Silicon: A Review , 2011, Advanced materials.

[121]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[122]  M. Stanley Whittingham,et al.  Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1978 .

[123]  Haihui Wang,et al.  Ultrathin and highly-ordered CoO nanosheet arrays for lithium-ion batteries with high cycle stability and rate capability , 2014 .

[124]  Guanhua Zhang,et al.  High‐Performance and Ultra‐Stable Lithium‐Ion Batteries Based on MOF‐Derived ZnO@ZnO Quantum Dots/C Core–Shell Nanorod Arrays on a Carbon Cloth Anode , 2015, Advanced materials.

[125]  Liquan Chen,et al.  Additive-free sodium titanate nanotube array as advanced electrode for sodium ion batteries , 2015 .

[126]  Xiaoyan Yan,et al.  Hydrothermal-synthesized NiO nanowall array for lithium ion batteries , 2013 .

[127]  Jian Jiang,et al.  Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications , 2012 .

[128]  Haowan Wu,et al.  Large-scale synthesis of Ag–Si core–shell nanowall arrays as high-performance anode materials of Li-ion batteries , 2014 .

[129]  Jianwei Liu,et al.  A high-performance lithium-ion battery anode based on the core–shell heterostructure of silicon-coated vertically aligned carbon nanofibers , 2012 .

[130]  Chenglong Zhao,et al.  Coaxial carbon–silicon–carbon nanotube arrays in porous anodic aluminum oxide templates as anodes for lithium ion batteries , 2012 .

[131]  G. F. Ortiz,et al.  Controlled Growth and Application in Lithium and Sodium Batteries of High-Aspect-Ratio, Self-Organized Titania Nanotubes , 2013 .

[132]  Y. Lei,et al.  Sub-100-nm nanoparticle arrays with perfect ordering and tunable and uniform dimensions fabricated by combining nanoimprinting with ultrathin alumina membrane technique. , 2014, ACS nano.

[133]  Zhonghua Zhang,et al.  NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries , 2014 .

[134]  Gunuk Wang,et al.  Three-Dimensional Nanoporous Fe2O3/Fe3C-Graphene Heterogeneous Thin Films for Lithium-Ion Batteries , 2014, ACS nano.

[135]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[136]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[137]  Yongsong Luo,et al.  Hierarchical Core/Shell NiCo2O4@NiCo2O4 Nanocactus Arrays with Dual-functionalities for High Performance Supercapacitors and Li-ion Batteries , 2015, Scientific Reports.

[138]  Qing Zhang,et al.  Copper–silicon core–shell nanotube arrays for free-standing lithium ion battery anodes , 2014 .

[139]  Xingcheng Xiao,et al.  Multifunctional TiO2-C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. , 2013, Nano letters.

[140]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[141]  X. Xia,et al.  Construction of carbon nanoflakes shell on CuO nanowires core as enhanced core/shell arrays anode of lithium ion batteries , 2015 .

[142]  T. Hang,et al.  High-performance Si-based 3D Cu nanostructured electrode assembly for rechargeable lithium batteries , 2015 .

[143]  Justin T. Harris,et al.  Nanostructured Si(₁-x)Gex for tunable thin film lithium-ion battery anodes. , 2013, ACS nano.

[144]  Yong Lei,et al.  Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries , 2015 .

[145]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[146]  Xiao Hua,et al.  Origin of additional capacities in metal oxide lithium-ion battery electrodes. , 2013, Nature materials.

[147]  Lin Hu,et al.  Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. , 2014, Nanoscale.

[148]  Changdeuck Bae,et al.  Nanotubular Heterostructure of Tin Dioxide/Titanium Dioxide as a Binder-Free Anode in Lithium-Ion Batteries. , 2015, ChemSusChem.

[149]  K. Abraham Intercalation positive electrodes for rechargeable sodium cells , 1982 .

[150]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[151]  Kehan Yu,et al.  Straightforward fabrication of a highly branched graphene nanosheet array for a Li-ion battery anode , 2012 .

[152]  Changle Li,et al.  “Sea cucumber”-like Ti@MoO3 nanorod arrays as self-supported lithium ion battery anodes with enhanced rate capability and durability , 2015 .

[153]  G. Stucky,et al.  Superior cathode of sodium-ion batteries: orthorhombic V₂O₅ nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. , 2014, Nano letters.

[154]  Yi Liu,et al.  Flexible free-standing hydrogen-treated titanium dioxide nanowire arrays as a high performance anode for lithium ion batteries , 2014 .

[155]  Chuang Yue,et al.  The effects of different core-shell structures on the electrochemical performances of Si-Ge nanorod arrays as anodes for micro-lithium ion batteries. , 2014, ACS applied materials & interfaces.

[156]  F. Endres,et al.  Preparation of Ge nanotube arrays from an ionic liquid for lithium ion battery anodes with improved cycling stability. , 2015, Chemical communications.

[157]  J. Tu,et al.  A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries. , 2013, Nanoscale.

[158]  Bin Liu,et al.  Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. , 2013, ACS nano.

[159]  Jung Woo Lee,et al.  Surface‐Coverage‐Dependent Cycle Stability of Core‐Shell Nanostructured Electrodes for Use in Lithium Ion Batteries , 2014 .

[160]  S. H. Park,et al.  Electrochemical flow-based solution-solid growth of the Cu2O nanorod array: potential application to lithium ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[161]  M. Chi,et al.  Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries , 2013 .

[162]  E. Quiroga‐González,et al.  How to Make Optimized Arrays of Si Wires Suitable as Superior Anode for Li-Ion Batteries , 2011, ECS Transactions.

[163]  K. M. Abraham,et al.  Prospects and Limits of Energy Storage in Batteries. , 2015, The journal of physical chemistry letters.

[164]  Q. Li,et al.  Chemical bath deposition of SnS2 nanowall arrays with improved electrochemical performance for lithium ion battery , 2010 .

[165]  J. Xie,et al.  A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime. , 2012, ACS nano.

[166]  K. Amine,et al.  Silicon-Copper Helical Arrays for New Generation Lithium Ion Batteries. , 2015, Nano letters.

[167]  Yan Yao,et al.  Heavily n-Dopable π-Conjugated Redox Polymers with Ultrafast Energy Storage Capability. , 2015, Journal of the American Chemical Society.

[168]  Henghui Zhou,et al.  Robust α-Fe2O3 nanorod arrays with optimized interstices as high-performance 3D anodes for high-rate lithium ion batteries , 2015 .

[169]  L. Gu,et al.  Synthesis of TiOx Nanotubular Arrays with Oxygen Defects as High‐Performance Anodes for Lithium‐Ion Batteries , 2015 .

[170]  H. Hng,et al.  Coaxial Fe3O4/CuO hybrid nanowires as ultra fast charge/discharge lithium-ion battery anodes , 2013 .

[171]  Lixia Yuan,et al.  Facile fabrication of CuO nanosheets on Cu substrate as anode materials for electrochemical energy storage , 2014 .

[172]  J. Eckert,et al.  Self-Organized TiO2/CoO Nanotubes as Potential Anode Materials for Lithium Ion Batteries , 2015 .

[173]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[174]  T. Djenizian,et al.  Porous Silicon Nanotube Arrays as Anode Material for Li-Ion Batteries. , 2015, ACS applied materials & interfaces.

[175]  Guozhong Cao,et al.  Hydrogenated Li4Ti5O12 Nanowire Arrays for High Rate Lithium Ion Batteries , 2012, Advanced materials.

[176]  J. Muldoon,et al.  Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. , 2014, Chemical reviews.

[177]  Qiaobao Zhang,et al.  Growth of hierarchical 3D mesoporous NiSix /NiCo2 O4 core/shell heterostructures on nickel foam for lithium-ion batteries. , 2014, ChemSusChem.

[178]  Z. Du,et al.  Enhanced Electrochemical Performance of Sn–Co Nanoarchitectured Electrode for Lithium Ion Batteries , 2011 .

[179]  C. Yuan,et al.  Effects of amorphous and crystalline MoO3coatings on the Li-ion insertion behavior of a TiO2nanotube anode for lithium ion batteries , 2014 .

[180]  Doron Aurbach,et al.  Mg rechargeable batteries: an on-going challenge , 2013 .

[181]  D. Pribat,et al.  Alumina-coated silicon-based nanowire arrays for high quality Li-ion battery anodes , 2012 .

[182]  Pedro Lavela,et al.  NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries , 2002 .

[183]  S. Azimi,et al.  Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries , 2014 .

[184]  Yuanjuan Bai,et al.  Novel peapod array of Ni2P@graphitized carbon fiber composites growing on Ti substrate: a superior material for Li-ion batteries and the hydrogen evolution reaction , 2015 .

[185]  Lifang Jiao,et al.  Ultra‐High Capacity Lithium‐Ion Batteries with Hierarchical CoO Nanowire Clusters as Binder Free Electrodes , 2015 .

[186]  Chang Sheh Lit,et al.  Fabrication of NiO Nanowall Electrodes for High Performance Lithium Ion Battery , 2008 .

[187]  P. Ajayan,et al.  Building energy storage device on a single nanowire. , 2011, Nano letters.

[188]  B. Chowdari,et al.  Metal oxides and oxysalts as anode materials for Li ion batteries. , 2013, Chemical reviews.

[189]  Xiang Ding,et al.  Improved electrochemical performances of CuO nanotube array prepared via electrodeposition as anode for lithium ion battery , 2015 .

[190]  Ezra L. Clark,et al.  MoO(3-x) nanowire arrays as stable and high-capacity anodes for lithium ion batteries. , 2012, Nano letters.

[191]  Yuncang Li,et al.  Facile synthesis of NiCo2O4 nanorod arrays on Cu conductive substrates as superior anode materials for high-rate Li-ion batteries , 2013 .

[192]  B. Tay,et al.  High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes. , 2013, Nanoscale.

[193]  Hui Xu,et al.  Electroless deposition of Ni3P–Ni arrays on 3-D nickel foam as a high performance anode for lithium-ion batteries , 2015 .

[194]  Arnold van Zyl,et al.  Review of the zebra battery system development , 1996 .

[195]  Liang Peng,et al.  A self-supported peapod-like mesoporous TiO2-C array with excellent anode performance in lithium-ion batteries. , 2015, Nanoscale.

[196]  S. Dai,et al.  High cyclability of ionic liquid-produced TiO2 nanotube arrays as an anode material for lithium-ion batteries , 2012 .

[197]  Zaiping Guo,et al.  3D Hierarchical Porous α‐Fe2O3 Nanosheets for High‐Performance Lithium‐Ion Batteries , 2015 .

[198]  J. Zhong,et al.  Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery. , 2010, ACS applied materials & interfaces.

[199]  Xiaoyan Yan,et al.  Self-supported hierarchical hollow-branch cobalt oxide nanorod arrays as binder-free electrodes for high-performance lithium ion batteries , 2016 .

[200]  B. Liu,et al.  Hierarchical MnCo2O4 nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. , 2014, Nanoscale.

[201]  Huaping Zhao,et al.  Highly Ordered Three-Dimensional Ni-TiO2 Nanoarrays as Sodium Ion Battery Anodes , 2015 .

[202]  W. Lee,et al.  Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. , 2014, Chemical reviews.

[203]  Yang Xu,et al.  Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies. , 2015, Angewandte Chemie.

[204]  Gengfeng Zheng,et al.  Aligned NiO nanoflake arrays grown on copper as high capacity lithium-ion battery anodes , 2012 .

[205]  Jingshan Luo,et al.  Diffusion-controlled evolution of core-shell nanowire arrays into integrated hybrid nanotube arrays for Li-ion batteries. , 2013, Nanoscale.

[206]  Qing Zhang,et al.  Ni–Si nanosheet network as high performance anode for Li ion batteries , 2015 .

[207]  Jinguang Cai,et al.  Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance , 2013, Nano Research.

[208]  J. Tu,et al.  Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries , 2011 .

[209]  J. Rogers,et al.  Si/Ge double-layered nanotube array as a lithium ion battery anode. , 2012, ACS nano.

[210]  Qing Zhang,et al.  Vertically aligned CNT-supported thick Ge films as high-performance 3D anodes for lithium ion batteries. , 2014, Small.

[211]  Jian Jiang,et al.  Direct growth of SnO2nanorod array electrodes for lithium-ion batteries , 2009 .

[212]  Dong‐Wan Kim,et al.  Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes , 2013, Nano Research.

[213]  Jian Jiang,et al.  A novel evolution strategy to fabricate a 3D hierarchical interconnected core-shell Ni/MnO2 hybrid for Li-ion batteries. , 2012, Chemical communications.

[214]  W. Jaegermann,et al.  Hybrid Architectures from 3D Aligned Arrays of Multiwall Carbon Nanotubes and Nanoparticulate LiCoPO4: Synthesis, Properties and Evaluation of Their Electrochemical Performance as Cathode Materials in Lithium Ion Batteries , 2011 .

[215]  Chaojiang Niu,et al.  Heterogeneous branched core–shell SnO2–PANI nanorod arrays with mechanical integrity and three dimentional electron transport for lithium batteries , 2014 .

[216]  Minghong Wu,et al.  C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors , 2014 .

[217]  Zhiyi Lu,et al.  V2O5 nanostructure arrays: controllable synthesis and performance as cathodes for lithium ion batteries , 2013 .

[218]  Bowen Zhu,et al.  Programmable Photo‐Electrochemical Hydrogen Evolution Based on Multi‐Segmented CdS‐Au Nanorod Arrays , 2014, Advanced materials.

[219]  C. Detavernier,et al.  Nanostructured TiO2/carbon nanosheet hybrid electrode for high-rate thin-film lithium-ion batteries , 2014, Nanotechnology.

[220]  T. Gustafsson,et al.  Self-supported three-dimensional nanoelectrodes for microbattery applications. , 2009, Nano letters.

[221]  Yang-Fan Xu,et al.  Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures , 2014, Nature Communications.

[222]  R. Inguanta,et al.  SnCo nanowire array as negative electrode for lithium-ion batteries , 2011 .

[223]  Marca M. Doeff,et al.  Electrochemical Insertion of Sodium into Carbon , 1993 .

[224]  G. Pan,et al.  NiO nanowall array prepared by a hydrothermal synthesis method and its enhanced electrochemical performance for lithium ion batteries , 2013 .

[225]  Yunhui Huang,et al.  Hierarchical MoS2 nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries. , 2014, Nanoscale.

[226]  Chundong Wang,et al.  Facile synthesis of carbon decorated silicon nanotube arrays as anode material for high-performance lithium-ion batteries , 2014 .

[227]  Q. Li,et al.  α-Fe2O3 nanowall arrays: hydrothermal preparation, growth mechanism and excellent rate performances for lithium ion batteries. , 2012, Nanoscale.

[228]  Lina Gao,et al.  Hierarchical WO3@SnO2 core–shell nanowire arrays on carbon cloth: a new class of anode for high-performance lithium-ion batteries , 2014 .

[229]  Deren Yang,et al.  Voltage-controlled synthesis of Cu–Li2O@Si core–shell nanorod arrays as high-performance anodes for lithium-ion batteries , 2014 .

[230]  Bruce Dunn,et al.  Hierarchical battery electrodes based on inverted opal structures , 2002 .

[231]  Y. Lai,et al.  Iron supported C@Fe3O4 nanotube array: a new type of 3D anode with low-cost for high performance lithium-ion batteries , 2012 .

[232]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[233]  Hua Zhang,et al.  TiO2 nanotube @ SnO2 nanoflake core–branch arrays for lithium-ion battery anode , 2014 .

[234]  Howard Wang,et al.  Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes , 2012 .

[235]  Yanjie Hu,et al.  Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries. , 2014, Nanoscale.

[236]  X. Xia,et al.  Construction of Co/Co 3 O 4 –C ternary core-branch arrays as enhanced anode materials for lithium ion batteries , 2015 .

[237]  Xiaoxuan Ma,et al.  Ionic liquid electrodeposition of Ge nanostructures on freestanding Ni-nanocone arrays for Li-ion battery , 2015 .

[238]  Shichao Zhang,et al.  Synthesis of Cu@Fe3O4 nanowire arrays electrode for Li-ion batteries , 2014 .

[239]  C. F. Ng,et al.  VO2 nanoflake arrays for supercapacitor and Li-ion battery electrodes: performance enhancement by hydrogen molybdenum bronze as an efficient shell material , 2015 .

[240]  Chunsheng Wang,et al.  Architecturing hierarchical function layers on self-assembled viral templates as 3D nano-array electrodes for integrated Li-ion microbatteries. , 2013, Nano letters.

[241]  S. Bianco,et al.  As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance , 2015 .

[242]  Lili Xing,et al.  Porous Co3O4 nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes. , 2011, Chemical communications.

[243]  D. He,et al.  High areal capacity Li ion battery anode based on thick mesoporous Co3O4 nanosheet networks , 2014 .

[244]  Arumugam Manthiram,et al.  Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage , 2011 .

[245]  K. Edström,et al.  The impact of size effects on the electrochemical behaviour of Cu2O-coated Cu nanopillars for advanced Li-ion microbatteries , 2014 .

[246]  Yuanyuan Li,et al.  Template synthesis of SnO2/α-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity. , 2012, Nanoscale.

[247]  Hua Zhang,et al.  Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. , 2015, Nano letters.

[248]  Yong Lei,et al.  Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries. , 2015, Journal of the American Chemical Society.

[249]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[250]  Yang Xu,et al.  Intertwined Cu3V2O7(OH)2·2H2O nanowires/carbon fibers composite: A new anode with high rate capability for sodium-ion batteries , 2015 .

[251]  Deren Yang,et al.  Large-Scale Synthesis of SnO2 Nanotube Arrays as High-Performance Anode Materials of Li-Ion Batteries , 2011 .

[252]  Qiang Wang,et al.  Cosurfactant-mediated microemulsion to free-standing hierarchical CuO arrays on copper substrates as anodes for lithium-ion batteries , 2013 .

[253]  S. T. Picraux,et al.  Carbon Nanotube‐Enhanced Growth of Silicon Nanowires as an Anode for High‐Performance Lithium‐Ion Batteries , 2012 .

[254]  Justin C. Lytle,et al.  Structural and electrochemical properties of three-dimensionally ordered macroporous tin(IV) oxide films , 2004 .

[255]  Jia Ding,et al.  High-density sodium and lithium ion battery anodes from banana peels. , 2014, ACS nano.

[256]  Yudi Mo,et al.  Three-dimensional NiCo2O4 nanowire arrays: preparation and storage behavior for flexible lithium-ion and sodium-ion batteries with improved electrochemical performance , 2015 .

[257]  Jian-qing Zhang,et al.  Novel iron oxide nanotube arrays as high-performance anodes for lithium ion batteries , 2015 .

[258]  Yuegang Zhang,et al.  Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures. , 2014, Nano letters.

[259]  M. Ge,et al.  Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes , 2013, Nano Research.

[260]  F. Risacher,et al.  Origin of Salts and Brine Evolution of Bolivian and Chilean Salars , 2009 .

[261]  D. He,et al.  Mesoporous NiO nanosheet networks as high performance anodes for Li ion batteries , 2013 .

[262]  T. Yiping,et al.  Nanocrystalline Li4Ti5O12-coated TiO2 nanotube arrays as three-dimensional anode for lithium-ion batteries , 2014 .

[263]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[264]  Haitao Zhou,et al.  Coaxial carbon/metal oxide/aligned carbon nanotube arrays as high-performance anodes for lithium ion batteries. , 2014, ChemSusChem.

[265]  Xueping Gao,et al.  Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries , 2012 .

[266]  Jean-Pierre Pereira-Ramos,et al.  High‐Rate Capability Silicon Decorated Vertically Aligned Carbon Nanotubes for Li‐Ion Batteries , 2012, Advanced materials.

[267]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[268]  J. Tilton,et al.  Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium , 2009 .

[269]  Zhen Zhou,et al.  Li ion battery materials with core-shell nanostructures. , 2011, Nanoscale.

[270]  Jinghua Yin,et al.  Controllable synthesis of hierarchical porous nickel oxide sheets arrays as anode for high-performance lithium ion batteries , 2015 .

[271]  J. Tu,et al.  Hierarchical Fe2O3@Co3O4 nanowire array anode for high-performance lithium-ion batteries , 2013 .

[272]  C. Xiong,et al.  Three-Dimensional Porous Iron Vanadate Nanowire Arrays as a High-Performance Lithium-Ion Battery. , 2015, ACS applied materials & interfaces.

[273]  D. Deng,et al.  Core-shell Ti@Si coaxial nanorod arrays formed directly on current collectors for lithium-ion batteries. , 2015, ACS applied materials & interfaces.

[274]  Yong Lei,et al.  Surface Nanometer‐Scale Patterning in Realizing Large‐Scale Ordered Arrays of Metallic Nanoshells with Well‐Defined Structures and Controllable Properties , 2010 .

[275]  Jun Chen,et al.  All Organic Sodium‐Ion Batteries with Na 4 C 8 H 2 O 6 , 2014 .

[276]  Xiaodong Li,et al.  Mechanically robust Si nanorod arrays on Cu/Ti bilayer film coated Si substrate for high performance lithium-ion battery anodes , 2012 .

[277]  Guangyuan Zheng,et al.  A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. , 2015, Nature nanotechnology.

[278]  G. Stucky,et al.  Plasmonic photoanodes for solar water splitting with visible light. , 2012, Nano letters.

[279]  D. He,et al.  NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries , 2011 .

[280]  T. Yokoshima,et al.  Electrochemical impedance analysis of electrodeposited Si-O-C composite thick film on Cu microcones-arrayed current collector for lithium ion battery anode , 2014 .

[281]  X. Sun,et al.  Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[282]  Weina Deng,et al.  Three-dimensional structure-based tin disulfide/vertically aligned carbon nanotube arrays composites as high-performance anode materials for lithium ion batteries , 2015 .

[283]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[284]  Deren Yang,et al.  Cu–Sn Core–Shell Nanowire Arrays as Three-Dimensional Electrodes for Lithium-Ion Batteries , 2011 .

[285]  Leigang Xue,et al.  Design and synthesis of Cu6Sn5-coated TiO2 nanotube arrays as anode material for lithium ion batteries , 2011 .

[286]  H. Hng,et al.  Epitaxial Growth of Branched α‐Fe2O3/SnO2 Nano‐Heterostructures with Improved Lithium‐Ion Battery Performance , 2011 .

[287]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[288]  Young‐Jun Kim,et al.  Prospective materials and applications for Li secondary batteries , 2011 .

[289]  J. Carrasco,et al.  Oligomeric-Schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers , 2015 .

[290]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[291]  C. Fisher,et al.  Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. , 2014, Chemical Society reviews.

[292]  Wei Xiang Lim,et al.  Designed strategy to fabricate a patterned V2O5 nanobelt array as a superior electrode for Li-ion batteries , 2011 .

[293]  C. F. Ng,et al.  A V2O5/Conductive‐Polymer Core/Shell Nanobelt Array on Three‐Dimensional Graphite Foam: A High‐Rate, Ultrastable, and Freestanding Cathode for Lithium‐Ion Batteries , 2014, Advanced materials.

[294]  Zeheng Yang,et al.  Chemical replacement route to Cu2−xSe-coated CuO nanotube array anode for enhanced performance in lithium ion batteries , 2014 .

[295]  H. Hng,et al.  Direct growth of FeVO4 nanosheet arrays on stainless steel foil as high-performance binder-free Li ion battery anode , 2012 .

[296]  L. Mai,et al.  Integrated SnO2 nanorod array with polypyrrole coverage for high-rate and long-life lithium batteries. , 2015, Physical chemistry chemical physics : PCCP.

[297]  Kaixue Wang,et al.  Carbon nanocolumn arrays prepared by pulsed laser deposition for lithium ion batteries , 2012 .

[298]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[299]  Li-Jun Wan,et al.  Better lithium-ion batteries with nanocable-like electrode materials , 2011 .

[300]  Weiping Cai,et al.  Highly ordered nanostructures with tunable size, shape and properties : A new way to surface nano-patterning using ultra-thin alumina masks , 2007 .

[301]  Jing Zhu,et al.  Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes , 2009 .

[302]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[303]  Ricardo Alcántara,et al.  Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries , 2005 .

[304]  Shikuan Yang,et al.  Template‐Confined Dewetting Process to Surface Nanopatterns: Fabrication, Structural Tunability, and Structure‐Related Properties , 2011 .

[305]  Liwei Lin,et al.  High Performance 3D Si/Ge Nanorods Array Anode Buffered by TiN/Ti Interlayer for Sodium‐Ion Batteries , 2015 .

[306]  Bing Tan,et al.  Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. , 2008, Nano letters.

[307]  Wenjie Mai,et al.  Heterogeneous Nanostructures for Sodium Ion Batteries and Supercapacitors , 2015 .

[308]  Huanlei Wang,et al.  Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. , 2013, Chemical communications.

[309]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[310]  Bruno Scrosati,et al.  High‐Rate, Long‐Life Ni–Sn Nanostructured Electrodes for Lithium‐Ion Batteries , 2007 .

[311]  Shuhong Yu,et al.  Designing Heterogeneous 1D Nanostructure Arrays Based on AAO Templates for Energy Applications. , 2015, Small.

[312]  R. C. Galloway,et al.  The ZEBRA electric vehicle battery: power and energy improvements , 1999 .

[313]  Li-Jun Wan,et al.  Cu‐Si Nanocable Arrays as High‐Rate Anode Materials for Lithium‐Ion Batteries , 2011, Advanced materials.

[314]  Jinping Liu,et al.  SnO2@Si core–shell nanowire arrays on carbon cloth as a flexible anode for Li ion batteries , 2013 .

[315]  Liangbing Hu,et al.  Electrodeposited three-dimensional Ni-Si nanocable arrays as high performance anodes for lithium ion batteries. , 2013, Nanoscale.

[316]  Yu Wang,et al.  Porous Iron Cobaltate Nanoneedles Array on Nickel Foam as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Performance. , 2016, ACS applied materials & interfaces.

[317]  Q. Li,et al.  High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes. , 2013, Nanoscale.

[318]  Quan Li,et al.  Enhanced electrochemical performance of three-dimensional Ni/Si nanocable arrays as a Li-ion battery anode by nitrogen doping in the Si shell. , 2013, ACS applied materials & interfaces.

[319]  Bingan Lu,et al.  Graphene improving lithium-ion battery performance by construction of NiCo2O4/graphene hybrid nanosheet arrays , 2014 .

[320]  Yehui Zhang,et al.  Cobalt nanomountain array supported silicon film anode for high-performance lithium ion batteries , 2013 .

[321]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[322]  D. He,et al.  Synthesis of core–shell architectures of silicon coated on controllable grown Ni-silicide nanostructures and their lithium-ion battery application , 2013 .

[323]  Rujia Zou,et al.  Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries , 2015 .

[324]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[325]  Guangcheng Yang,et al.  Controlled synthesis of porous Co3O4–C hybrid nanosheet arrays and their application in lithium ion batteries , 2014 .