Diffusion maps, spectral clustering and reaction coordinates of dynamical systems

[1]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[2]  Ulrike von Luxburg,et al.  From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians , 2005, COLT.

[3]  B. Nadler,et al.  Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck Operators , 2005, NIPS.

[4]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Marco Saerens,et al.  Clustering Using a Random Walk Based Distance Measure , 2005, ESANN.

[6]  M. Maggioni,et al.  GEOMETRIC DIFFUSIONS AS A TOOL FOR HARMONIC ANALYSIS AND STRUCTURE DEFINITION OF DATA PART I: DIFFUSION MAPS , 2005 .

[7]  Ulrike von Luxburg,et al.  Limits of Spectral Clustering , 2004, NIPS.

[8]  François Fouss,et al.  The Principal Components Analysis of a Graph, and Its Relationships to Spectral Clustering , 2004, ECML.

[9]  A. Stuart,et al.  Extracting macroscopic dynamics: model problems and algorithms , 2004 .

[10]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[11]  R. Elber,et al.  Computing time scales from reaction coordinates by milestoning. , 2004, The Journal of chemical physics.

[12]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[13]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[14]  Klaus Schulten,et al.  Reaction paths based on mean first-passage times , 2003 .

[15]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[16]  Wilhelm Huisinga,et al.  Extracting macroscopic stochastic dynamics: Model problems , 2003 .

[17]  C. W. Gear,et al.  Equation-Free Multiscale Computation: enabling microscopic simulators to perform system-level tasks , 2002, physics/0209043.

[18]  Assaf Gottlieb,et al.  Algorithm for data clustering in pattern recognition problems based on quantum mechanics. , 2001, Physical review letters.

[19]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[20]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.

[21]  Naftali Tishby,et al.  Data Clustering by Markovian Relaxation and the Information Bottleneck Method , 2000, NIPS.

[22]  Wilhelm Huisinga,et al.  From simulation data to conformational ensembles: Structure and dynamics‐based methods , 1999 .

[23]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[24]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[25]  Wilhelm Huisinga,et al.  From simulation data to conformational ensembles: Structure and dynamics‐based methods , 1999, J. Comput. Chem..

[26]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  L. Arnold Stochastic Differential Equations: Theory and Applications , 1992 .

[28]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[29]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[30]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[31]  Lowell S. Brown,et al.  Supersymmetry and the Bistable Fokker-Planck equation , 1984 .

[32]  Zeev Schuss,et al.  Theory and Applications of Stochastic Differential Equations , 1980 .

[33]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.