Recovering the Inflationary Potential and Primordial Power Spectrum With a Slow Roll Prior

We introduce a new method for applying an inflationary prior to a cosmological data set that includes relations between observables at arbitrary order in the slow roll expansion. The process is based on the inflationary flow equations, and the slow roll parameters appear explicitly in the cosmological parameter set. We contrast our method with other ways of imposing an inflationary prior on a cosmological data set, and argue that this method is ideal for use with heterogeneous data sets. In particular, it would be well suited to exploiting any direct detection of fundamental tensor modes by a BBO-style mission. To demonstrate the practical use of this method we apply it to the WMAPI+All data set, and the newly released WMAPII data set on its own and together with the SDSS data. We find that all basic classes of single field inflationary models are still allowed at the 1−2σ level, but the overall parameter space is sharply constrained. In particular, we find evidence that the combination WMAPII+SDSS is sensitive to effects arising from terms that are quadratic in the two leading order slow roll parameters.

[1]  Richard Easther,et al.  Inflationary perturbations from a potential with a step , 2001 .

[2]  A. Melchiorri,et al.  Inflationary physics from the Wilkinson microwave anisotropy probe , 2004 .

[3]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[4]  Prospects for direct detection of primordial gravitational waves , 2006, astro-ph/0602594.

[5]  C. L. Kuo,et al.  High-Resolution Observations of the Cosmic Microwave Background Power Spectrum with ACBAR , 2002, astro-ph/0212289.

[6]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[7]  Random matrices and the spectrum of N-flation , 2005, hep-th/0512102.

[8]  Jérôme Martin,et al.  Cosmological parameter estimation and the inflationary cosmology , 2002, astro-ph/0202094.

[9]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[10]  Michael S. Turner,et al.  Kinematic constraints to the key inflationary observables , 2001 .

[11]  M. Halpern,et al.  Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: temperature analysis , 2006 .

[12]  S. Dodelson,et al.  Cosmic microwave background measurements can discriminate among inflation models , 1997, astro-ph/9702166.

[13]  N. Christensen,et al.  Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements , 2000, astro-ph/0103134.

[14]  S. Kachru,et al.  N-flation , 2005, hep-th/0507205.

[15]  L. F. Abbott,et al.  Constraints on generalized inflationary cosmologies , 1984 .

[16]  Efficient cosmological parameter estimation from microwave background anisotropies , 2002, astro-ph/0206014.

[17]  L. Knox,et al.  The Age of the Universe and the Cosmological Constant Determined from Cosmic Microwave Background Anisotropy Measurements , 2001 .

[18]  Matias Zaldarriaga,et al.  Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization , 2005, astro-ph/0512263.

[19]  Inflation: Flow, fixed points and observables to arbitrary order in slow roll , 2002, astro-ph/0206032.

[20]  G. Veneziano,et al.  Pre-big-bang in string cosmology , 1992, hep-th/9211021.

[21]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[22]  A. Liddle,et al.  Reconstructing the inflaton potential—an overview , 1995, astro-ph/9508078.

[23]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[24]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[25]  The Anisotropy of the Microwave Background to l = 3500: Mosaic Observations with the Cosmic Background Imager , 2002, astro-ph/0205388.

[26]  Microwave background constraints on inflationary parameters , 2002, astro-ph/0207213.

[27]  David H. Lyth,et al.  Generating the curvature perturbation without an inflaton , 2001 .

[28]  Precision of inflaton potential reconstruction from CMB using the general slow-roll approximation , 2005, astro-ph/0505158.

[29]  A. Liddle,et al.  Inflaton potential reconstruction without slow roll , 1999, astro-ph/9906327.

[30]  Inflaton field potential producing an exactly flat spectrum of adiabatic perturbations , 2005, astro-ph/0507193.

[31]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[32]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[33]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[34]  A. Riotto,et al.  Theoretical uncertainties in inflationary predictions , 2005, astro-ph/0511127.

[35]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation , 2003 .

[36]  R. Easther,et al.  The Lyth Bound and the end of inflation , 2006, astro-ph/0601276.

[37]  Copeland,et al.  Reconstructing the inflaton potential: Perturbative reconstruction to second order. , 1993, Physical review. D, Particles and fields.

[38]  David H. Lyth,et al.  What Would We Learn by Detecting a Gravitational Wave Signal in the Cosmic Microwave Background Anisotropy , 1997 .

[39]  P. Steinhardt,et al.  Probing the early universe with inflationary gravitational waves , 2005, astro-ph/0512014.

[40]  Gravitational waves, inflation and the cosmic microwave background: towards testing the slow-roll paradigm , 2005, astro-ph/0504294.

[41]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003 .

[42]  W. Kinney Constraining Inflation with Cosmic Microwave Background Polarization , 1998, astro-ph/9806259.

[43]  P. Steinhardt,et al.  The Ekpyrotic universe: Colliding branes and the origin of the hot big bang , 2001, hep-th/0103239.

[44]  Constraining slow-roll inflation with WMAP and 2dF , 2003, astro-ph/0306305.

[45]  R. R. Caldwell,et al.  A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state , 1999, astro-ph/9908168.