Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods
暂无分享,去创建一个
Hendrik Speleers | Carla Manni | Stefano Serra Capizzano | Carlo Garoni | Debora Sesana | S. Capizzano | H. Speleers | C. Manni | Debora Sesana | C. Garoni
[1] Carlo Garoni,et al. A general tool for determining the asymptotic spectral distribution of Hermitian matrix-sequences , 2015 .
[2] S. Serra Capizzano,et al. Distribution results on the algebra generated by Toeplitz sequences: a finite-dimensional approach , 2001 .
[3] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[4] L. Hörmander,et al. Pseudo-differential Operators and Non-elliptic Boundary Problems , 1966 .
[5] E. E. Tyrtyshnikov. A unifying approach to some old and new theorems on distribution and clustering , 1996 .
[6] Hendrik Speleers,et al. Spectral analysis and spectral symbol of matrices in isogeometric collocation methods , 2015, Math. Comput..
[7] Stefano Serra-Capizzano,et al. The GLT class as a generalized Fourier analysis and applications , 2006 .
[8] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[9] Stefano Serra Capizzano,et al. On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..
[10] S. Capizzano. Spectral behavior of matrix sequences and discretized boundary value problems , 2001 .
[11] Carlo Garoni,et al. Tools for Determining the Asymptotic Spectral Distribution of non-Hermitian Perturbations of Hermitian Matrix-Sequences and Applications , 2015 .
[12] Stefano Serra Capizzano,et al. Analysis of preconditioning strategies for collocation linear systems , 2003 .
[13] Carlo Garoni,et al. Spectral Analysis and Spectral Symbol of d-variate $\mathbb Q_{\boldsymbol p}$ Lagrangian FEM Stiffness Matrices , 2015, SIAM J. Matrix Anal. Appl..
[14] S. Serra Capizzano,et al. Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .
[15] Carlo Garoni. Structured matrices coming from PDE approximation theory: spectral analysis, spectral symbol and design of fast iterative solvers. , 2015 .
[16] Hendrik Speleers,et al. Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis , 2017, SIAM J. Numer. Anal..
[17] R. Cooke. Real and Complex Analysis , 2011 .
[18] Hendrik Speleers,et al. Robust and optimal multi-iterative techniques for IgA Galerkin linear systems , 2015 .
[19] Hendrik Speleers,et al. On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.
[20] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[21] Paolo Tilli,et al. Locally Toeplitz sequences: spectral properties and applications , 1998 .
[22] Leonid Golinskii,et al. The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences , 2007, J. Approx. Theory.
[23] C. R. Deboor,et al. A practical guide to splines , 1978 .