Visual analytics of cyber physical data streams using spatio-temporal radial pixel visualization

Cyber physical systems (CPS), such as smart buildings and data centers, are richly instrumented systems composed of tightly coupled computational and physical elements that generate large amounts of data. To explore CPS data and obtain actionable insights, we present a new approach called Radial Pixel Visualization (RPV); which uses multiple concentric rings to show the data in a compact circular layout of pixel cells, each ring containing the values for a specific variable over time and each pixel cell representing an individual data value at a specific time. RPV provides an effective visual representation of locality and periodicity of the high volume, multivariate data streams. RPVs may have an additional analysis ring for highlighting the results of correlation analysis or peak point detection. Our real-world applications demonstrate the effectiveness of this approach. The application examples show how RPV can help CPS administrators to identify periodic thermal hot spots, find root-causes of the cooling problems, understand building energy consumption, and optimize IT-services workloads.

[1]  Ben Shneiderman,et al.  Dynamic Query Tools for Time Series Data Sets: Timebox Widgets for Interactive Exploration , 2004, Inf. Vis..

[2]  Heidrun Schumann,et al.  Enhanced Interactive Spiral Display , 2008 .

[3]  Michael Burch,et al.  Uncovering Strengths and Weaknesses of Radial Visualizations---an Empirical Approach , 2010, IEEE Transactions on Visualization and Computer Graphics.

[4]  Daniel A. Keim,et al.  FP-Viz: Visual Frequent Pattern Mining , 2005 .

[5]  Adam Wierman,et al.  Renewable and cooling aware workload management for sustainable data centers , 2012, SIGMETRICS '12.

[6]  Richard F. Riesenfeld,et al.  A Survey of Radial Methods for Information Visualization , 2009, IEEE Transactions on Visualization and Computer Graphics.

[7]  Nitin Kumar,et al.  Time-series Bitmaps: a Practical Visualization Tool for Working with Large Time Series Databases , 2005, SDM.

[8]  Marc Alexa,et al.  Visualizing time-series on spirals , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[9]  Robert F. Erbacher,et al.  Designing visualization capabilities for IDS challenges , 2005, IEEE Workshop on Visualization for Computer Security, 2005. (VizSEC 05)..

[10]  Ben Shneiderman,et al.  Interactive pattern search in time series , 2005, IS&T/SPIE Electronic Imaging.

[11]  Guy E. Garnett,et al.  Cyber-Physical Systems : Position Paper CPS Environments , 2022 .

[12]  Daniel A. Keim,et al.  Visual analytics of anomaly detection in large data streams , 2009, Electronic Imaging.

[13]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[14]  J. Stasko,et al.  Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[15]  Daniel A. Keim,et al.  CircleView: a new approach for visualizing time-related multidimensional data sets , 2004, AVI.

[16]  John A. Stankovic,et al.  Human in the loop: distributed data streams for immersive cyber-physical systems , 2008, SIGBED.

[17]  Hans-Peter Kriegel,et al.  Recursive pattern: a technique for visualizing very large amounts of data , 1995, Proceedings Visualization '95.

[18]  Wolfgang Jank,et al.  Representing Unevenly-Spaced Time Series Data for Visualization and Interactive Exploration , 2005, INTERACT.

[19]  Wolfgang Jank,et al.  Similarity-Based Forecasting with Simultaneous Previews: A River Plot Interface for Time Series Forecasting , 2007, 2007 11th International Conference Information Visualization (IV '07).

[20]  Hans-Peter Kriegel,et al.  'Circle Segments': A Technique for Visually Exploring Large Multidimensional Data Sets , 1996 .

[21]  Gennady L. Andrienko,et al.  Extracting Events from Spatial Time Series , 2010, 2010 14th International Conference Information Visualisation.