How β-Phase Content Moderates Chain Conjugation and Energy Transfer in Polyfluorene Films.

Poly(9,9-dioctylfluorene) (PFO) is a blue-light-emitting polymer exhibiting two distinct phases, namely, the disordered "glassy" phase and a more ordered β-phase. We investigate how a systematic increase in the fraction of β-phase present in PFO films controls chain conformation, photoluminescence quantum efficiency (PLQE), and the resonant energy transfer from the glassy to the β-phase. All films are prepared by the same technique, using paraffin oil as an additive to the spin-coating solution, allowing systematic tuning of the β-phase fraction. The PFO films exhibit high PLQE with values increasing to 0.72 for increasing fractions of β-phase present, with the β-phase chain conformation becoming more planar and including more repeat units. Differences in Förster radii calculated from the overlap of steady-state absorptance and emission spectra and from time-resolved ultrafast photoluminescence transients indicate that exciton diffusion within the glassy phase plays an important role in the energy transfer process.

[1]  I. Samuel,et al.  Exciton–Polaron Interactions in Polyfluorene Films with β-Phase , 2018 .

[2]  H. Bässler,et al.  Controlling aggregate formation in conjugated polymers by spin‐coating below the critical temperature of the disorder–order transition , 2018 .

[3]  D. Bradley,et al.  Photophysical and Fluorescence Anisotropic Behavior of Polyfluorene β-Conformation Films. , 2018, The journal of physical chemistry letters.

[4]  E. Gu,et al.  An Easy Approach to Control β-Phase Formation in PFO Films for Optimized Emission Properties , 2017, Molecules.

[5]  D. Bradley,et al.  Spectroscopic properties of poly(9,9‐dioctylfluorene) thin films possessing varied fractions of β‐phase chain segments: enhanced photoluminescence efficiency via conformation structuring , 2016, Journal of polymer science. Part B, Polymer physics.

[6]  D. Huber,et al.  Optical absorption of the β‐phase of poly(9,9‐dioctylfluorene) , 2016 .

[7]  D. Bradley,et al.  Solution‐crystallization and related phenomena in 9,9‐dialkyl‐fluorene polymers. II. Influence of side‐chain structure , 2015, Journal of polymer science. Part B, Polymer physics.

[8]  H. Bässler,et al.  Electronic Processes in Organic Semiconductors: An Introduction , 2015 .

[9]  Paulina O. Morawska,et al.  Subpicosecond exciton dynamics in polyfluorene films from experiment and microscopic theory , 2015 .

[10]  Michael P. Shaver,et al.  Intrinsic high refractive index polymers , 2015 .

[11]  Martin Baumgarten,et al.  Designing pi-conjugated polymers for organic electronics , 2013 .

[12]  Linghai Xie,et al.  Efficient and stable deep blue polymer light-emitting devices based on β-phase poly(9,9-dioctylfluorene) , 2013 .

[13]  Yuguang Ma,et al.  Study of β phase and Chains Aggregation Degrees in Poly(9,9-dioctylfluorene) (PFO) Solution , 2012 .

[14]  Paul E. Shaw,et al.  Fluorescence Quenchers in Mixed Phase Polyfluorene Films , 2010 .

[15]  J. Veinot,et al.  Stabilizing the optical properties of PFO through addition of a non-volatile low molecular weight aromatic ether , 2010 .

[16]  H. Bässler,et al.  Triplet energy transfer in conjugated polymers. III. An experimental assessment regarding the influence of disorder on polaronic transport , 2010 .

[17]  Ifor D. W. Samuel,et al.  Exciton–Exciton Annihilation in Mixed‐Phase Polyfluorene Films , 2010 .

[18]  G. Scholes,et al.  Coherent Intrachain Energy Migration in a Conjugated Polymer at Room Temperature , 2009, Science.

[19]  L. Herz,et al.  Dynamics of excited-state conformational relaxation and electronic delocalization in conjugated porphyrin oligomers. , 2008, Journal of the American Chemical Society.

[20]  G. Bazan,et al.  Controlled β‐Phase Formation in Poly(9,9‐di‐n‐octylfluorene) by Processing with Alkyl Additives , 2008 .

[21]  D. Bradley,et al.  Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. , 2008, Nature materials.

[22]  S. Chen,et al.  Self‐Dopant Formation in Poly(9,9‐di‐n‐octylfluorene) Via a Dipping Method for Efficient and Stable Pure‐Blue Electroluminescence , 2007 .

[23]  L. Herz,et al.  Intermolecular interaction effects on the ultrafast depolarization of the optical emission from conjugated polymers. , 2007, Physical review letters.

[24]  Carsten Rothe,et al.  The β‐Phase of Poly(9,9‐dioctylfluorene) as a Potential System for Electrically Pumped Organic Lasing , 2006 .

[25]  D. Huber,et al.  Excitons in disordered polymers , 2005, cond-mat/0512339.

[26]  S. Meskers,et al.  Comparison of the chain length dependence of the singlet- and triplet-excited states of oligofluorenes , 2005 .

[27]  P. Etchegoin,et al.  Ellipsometric Characterization of the Optical Constants of Polyfluorene Gain Media , 2005 .

[28]  Richard H. Friend,et al.  General observation of n-type field-effect behaviour in organic semiconductors , 2005, Nature.

[29]  A. Köhler,et al.  Morphology-dependent energy transfer within polyfluorene thin films , 2004 .

[30]  T. Forster Energiewanderung und Fluoreszenz , 2004, Naturwissenschaften.

[31]  B. Schwartz,et al.  Conjugated polymers as molecular materials: how chain conformation and film morphology influence energy transfer and interchain interactions. , 2003, Annual review of physical chemistry.

[32]  Piers Andrew,et al.  Blue, surface-emitting, distributed feedback polyfluorene lasers , 2003 .

[33]  Donal D. C. Bradley,et al.  Exciton migration in β -phase poly(9,9-dioctylfluorene) , 2003 .

[34]  H. Sirringhaus,et al.  Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene) , 2003 .

[35]  A. S. Dhoot,et al.  Exciton and polaron dynamics in a step-ladder polymeric semiconductor: the influence of interchain order , 2002 .

[36]  Donal D. C. Bradley,et al.  The effect of morphology on the temperature-dependent photoluminescence quantum efficiency of the conjugated polymer poly(9, 9-dioctylfluorene) , 2002 .

[37]  Ullrich Scherf,et al.  Semiconducting Polyfluorenes—Towards Reliable Structure–Property Relationships , 2002 .

[38]  R. T. Phillips,et al.  Effects of aggregation on the excitation transfer in perylene-end-capped polyindenofluorene studied by time-resolved photoluminescence spectroscopy , 2001 .

[39]  Richard H. Friend,et al.  Exciton dissociation mechanisms in the polymeric semiconductors poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-co-benzothiadiazole) , 2001 .

[40]  Donal D. C. Bradley,et al.  Interplay of Physical Structure and Photophysics for a Liquid Crystalline Polyfluorene , 1999 .

[41]  Donal D. C. Bradley,et al.  High brightness and efficiency blue light-emitting polymer diodes , 1998 .

[42]  Arno Kraft,et al.  Electroluminescent Conjugated Polymers-Seeing Polymers in a New Light. , 1998, Angewandte Chemie.

[43]  Michael Inbasekaran,et al.  Influence of aggregation on the optical properties of a polyfluorene , 1997, Optics & Photonics.

[44]  D. Bradley,et al.  Photoluminescence spectra of oligo-paraphenyllenevinylenes: a joint theoretical and experimental characterization , 1997 .

[45]  N. Nijegorodov,et al.  The Influence of Planarity and Rigidity on the Absorption and Fluorescence Parameters and Intersystem Crossing Rate Constant in Aromatic Molecules , 1994 .

[46]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[47]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[48]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[49]  C. K. Chiang,et al.  Electrical Conductivity in Doped Polyacetylene. , 1977 .

[50]  Richard C. Powell,et al.  Singlet exciton energy transfer in organic solids , 1975 .

[51]  M. Z. Maksimov,et al.  On Energy Transfer in Solid Solutions , 1962 .

[52]  T. Főrster,et al.  10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation , 1959 .

[53]  Th. Förster,et al.  Experimentelle und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie , 1949 .