Testing Fractional Order of Long Memory Processes: A Monte Carlo Study

Testing the fractionally integrated order of seasonal and nonseasonal unit roots is quite important for the economic and financial time series modeling. In this article, the widely used Robinson's (1994) test is applied to various well-known long memory models. Via Monte Carlo experiments, we study and compare the performances of this test using several sample sizes.

[1]  Dominique Guegan,et al.  Forecasting electricity spot market prices with a k-factor GIGARCH process , 2007 .

[2]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[3]  B. Ray Long-range forecasting of IBM product revenues using a seasonal fractionally differenced ARMA model , 1993 .

[4]  John B. Carlin,et al.  Sensitivity Analysis of Seasonal Adjustments: Empirical Case Studies , 1989 .

[5]  P. Robinson,et al.  Testing of unit root and other nonstationary hypotheses in macroeconomic time series , 1996 .

[6]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[7]  D. Guégan,et al.  Business Surveys Modelling with Seasonal-Cyclical Long Memory Models , 2008 .

[8]  Andrew R. Molnar,et al.  SUMMARY OF THE CONFERENCE1 , 1982 .

[9]  Michel Terraza,et al.  Forecasts of the seasonal fractional integrated series , 2004 .

[10]  Philip Hans Franses,et al.  A periodic long memory model for quarterly UK inflation , 1997 .

[11]  Richard T. Baillie,et al.  Long memory processes and fractional integration in econometrics , 1996 .

[12]  H. L. Gray,et al.  A k‐Factor GARMA Long‐memory Model , 1998 .

[13]  Dominique Guegan,et al.  Forecasting with k‐factor Gegenbauer Processes: Theory and Applications , 2001 .

[14]  Luis A. Gil-Alana,et al.  A fractionally integrated exponential model for UK unemployment , 2001 .

[15]  D. Guégan,et al.  Comparison of parameter estimation methods in cyclical long memory time series , 2001 .

[16]  L. Gil‐Alana Testing of Seasonal Fractional Integration in UK and Japanese Consumption and Income , 2000 .

[17]  Uwe Hassler,et al.  MIS)SPECIFICATION OF LONG MEMORY IN SEASONAL TIME SERIES , 1994 .

[18]  H. L. Gray,et al.  ON GENERALIZED FRACTIONAL PROCESSES , 1989 .

[19]  D. Guégan A prospective study of the k-factor Gegenbauer processes with heteroscedastic errors and an application to inflation rates , 2003 .

[20]  Dominique Guegan,et al.  Forecasting financial time series with generalized long memory processes , 2000 .

[21]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[22]  L. Gil‐Alana,et al.  Evaluation of robinson's (1994) Tests in finite samples , 2000 .

[23]  Josu Arteche,et al.  Semiparametric robust tests on seasonal or cyclical long memory time series , 2002 .

[24]  Fallaw Sowell Maximum likelihood estimation of stationary univariate fractionally integrated time series models , 1992 .

[25]  S. Porter-Hudak An Application of the Seasonal Fractionally Differenced Model to the Monetary Aggregates , 1990 .

[26]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[27]  Josu Arteche,et al.  Semiparametric Inference in Seasonal and Cyclical Long Memory Processes , 2000 .

[28]  Glenn D. Rudebusch,et al.  Long Memory and Persistence in Aggregate Output , 1989, Business Cycles.

[29]  Luis A. Gil-Alana,et al.  Fractional Integration and Cointegration: An Overview and an Empirical Application , 2009 .

[30]  R. Leipus,et al.  A generalized fractionally differencing approach in long-memory modeling , 1995 .

[31]  D. Guégan A New Model: The k-Factor GIGARCH Process , 2000 .

[32]  P. Robinson Efficient Tests of Nonstationary Hypotheses , 1994 .

[33]  L. Gil‐Alana Testing Seasonality in the Context of Fractionally Integrated Processes , 2006 .