On the Complexity of Mixed Discriminants and Related Problems

We prove that it is #P-hard to compute the mixed discriminant of rank 2 positive semidefinite matrices. We present poly-time algorithms to approximate the ”beast”. We also prove NP-hardness of two problems related to mixed discriminants of rank 2 positive semidefinite matrices. One of them, the so called Full Rank Avoidance problem, had been conjectured to be NP-Complete in [23] and in [25]. We also present a deterministic poly-time algorithm computing the mixed discriminant D(A1,..,AN) provided that the linear (matrix) subspace generated by {A1,..,AN } is small and discuss randomized algorithms approximating mixed discriminants within absolute error.

[1]  Leonid Gurvits The Van der Waerden conjecture for mixed discriminants , 2004 .

[2]  Ketan Mulmuley,et al.  Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..

[3]  Alexander I. Barvinok,et al.  Two Algorithmic Results for the Traveling Salesman Problem , 1996, Math. Oper. Res..

[4]  Leonid Gurvits,et al.  Classical complexity and quantum entanglement , 2004, J. Comput. Syst. Sci..

[5]  J.-G. Luque,et al.  Hankel hyperdeterminants and Selberg integrals , 2003 .

[6]  Alex Samorodnitsky,et al.  A Deterministic Algorithm for Approximating the Mixed Discriminant and Mixed Volume, and a Combinatorial Corollary , 2002, Discret. Comput. Geom..

[7]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[8]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[9]  Ravindra B. Bapat,et al.  Mixed discriminants of positive semidefinite matrices , 1989 .

[10]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[11]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[12]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 2000, Comb..

[13]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries , 2001, STOC '01.

[14]  Richard J. Lipton,et al.  A Monte-Carlo Algorithm for Estimating the Permanent , 1993, SIAM J. Comput..

[15]  Alexander I. Barvinok,et al.  Computing Mixed Discriminants, Mixed Volumes, and Permanents , 1997, Discret. Comput. Geom..

[16]  A. Barvinok Polynomial time algorithms to approximate permanents and mixed discriminants within a simply exponential factor , 1999 .

[17]  D. Falikman Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix , 1981 .

[18]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[19]  Kenneth W. Regan Understanding the Mulmuley-Sohoni Approach to P vs. NP , 2002, Bull. EATCS.

[20]  Martin E. Dyer,et al.  On the Complexity of Computing Mixed Volumes , 1998, SIAM J. Comput..

[21]  Alex Samorodnitsky,et al.  A deterministic polynomial-time algorithm for approximating mixed discriminant and mixed volume , 2000, STOC '00.

[22]  Leslie G. Valiant,et al.  Quantum computers that can be simulated classically in polynomial time , 2001, STOC '01.

[23]  G. Egorychev The solution of van der Waerden's problem for permanents , 1981 .