A survey and comparison of peer-to-peer overlay network schemes

Over the Internet today, computing and communications environments are significantly more complex and chaotic than classical distributed systems, lacking any centralized organization or hierarchical control. There has been much interest in emerging Peer-to-Peer (P2P) network overlays because they provide a good substrate for creating large-scale data sharing, content distribution, and application-level multicast applications. These P2P overlay networks attempt to provide a long list of features, such as: selection of nearby peers, redundant storage, efficient search/location of data items, data permanence or guarantees, hierarchical naming, trust and authentication, and anonymity. P2P networks potentially offer an efficient routing architecture that is self-organizing, massively scalable, and robust in the wide-area, combining fault tolerance, load balancing, and explicit notion of locality. In this article we present a survey and comparison of various Structured and Unstructured P2P overlay networks. We categorize the various schemes into these two groups in the design spectrum, and discuss the application-level network performance of each group.

[1]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[2]  G. Hardin,et al.  The Tragedy of the Commons , 1968, Green Planet Blues.

[3]  H. J. Siegel Interconnection Networks for SIMD Machines , 1979, Computer.

[4]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[5]  Yakov Rekhter,et al.  An Architecture for IP Address Allocation with CIDR , 1993, RFC.

[6]  Udi Manber,et al.  Finding Similar Files in a Large File System , 1994, USENIX Winter.

[7]  James H. Burrows,et al.  Secure Hash Standard , 1995 .

[8]  David R. Karger,et al.  Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the World Wide Web , 1997, STOC '97.

[9]  Rajmohan Rajaraman,et al.  Accessing Nearby Copies of Replicated Objects in a Distributed Environment , 1997, SPAA '97.

[10]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[11]  Li Fan,et al.  Web caching and Zipf-like distributions: evidence and implications , 1999, IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320).

[12]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[13]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[14]  David R. Karger,et al.  A scalable location service for geographic ad hoc routing , 2000, MobiCom '00.

[15]  Aviel D. Rubin,et al.  Publius: a robust, tamper-evident, censorship-resistant web publishing system , 2000 .

[16]  Ben Y. Zhao,et al.  OceanStore: an architecture for global-scale persistent storage , 2000, SIGP.

[17]  Paul Francis,et al.  Yoid: Extending the Internet Multicast Architec-ture , 2000 .

[18]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[19]  Ian Clarke,et al.  Freenet: A Distributed Anonymous Information Storage and Retrieval System , 2000, Workshop on Design Issues in Anonymity and Unobservability.

[20]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[21]  Marvin Theimer,et al.  Feasibility of a serverless distributed file system deployed on an existing set of desktop PCs , 2000, SIGMETRICS '00.

[22]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[23]  Lada A. Adamic,et al.  Power-Law Distribution of the World Wide Web , 2000, Science.

[24]  Ben Y. Zhao,et al.  Bayeux: an architecture for scalable and fault-tolerant wide-area data dissemination , 2001, NOSSDAV '01.

[25]  Peter Druschel,et al.  Pastry: Scalable, distributed object location and routing for large-scale peer-to- , 2001 .

[26]  MaziéresDavid,et al.  A low-bandwidth network file system , 2001 .

[27]  Stefan Saroiu,et al.  A Measurement Study of Peer-to-Peer File Sharing Systems , 2001 .

[28]  Andy Oram,et al.  Peer-to-Peer: Harnessing the Power of Disruptive Technologies , 2001 .

[29]  Antony I. T. Rowstron,et al.  PAST: a large-scale, persistent peer-to-peer storage utility , 2001, Proceedings Eighth Workshop on Hot Topics in Operating Systems.

[30]  Mark Handley,et al.  A scalable content-addressable network , 2001, SIGCOMM '01.

[31]  Lada A. Adamic,et al.  Search in Power-Law Networks , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Steve M. Bellovin,et al.  Security aspects of napster and gnutella , 2001 .

[33]  Miguel Castro,et al.  SCRIBE: The Design of a Large-Scale Event Notification Infrastructure , 2001, Networked Group Communication.

[34]  David R. Karger,et al.  Wide-area cooperative storage with CFS , 2001, SOSP.

[35]  Antony I. T. Rowstron,et al.  Storage management and caching in PAST, a large-scale, persistent peer-to-peer storage utility , 2001, SOSP.

[36]  Balachander Krishnamurthy,et al.  Early measurements of a cluster-based architecture for P2P systems , 2001, IMW '01.

[37]  Antony I. T. Rowstron,et al.  Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems , 2001, Middleware.

[38]  Kevin Leyton-Brown,et al.  Incentives for sharing in peer-to-peer networks , 2001, EC '01.

[39]  Ben Y. Zhao,et al.  Maintenance-Free Global Data Storage , 2001, IEEE Internet Comput..

[40]  Lali Barrière,et al.  Efficient Routing in Networks with Long Range Contacts , 2001, DISC.

[41]  David Mazières,et al.  A low-bandwidth network file system , 2001, SOSP.

[42]  Moni Naor,et al.  Viceroy: a scalable and dynamic emulation of the butterfly , 2002, PODC '02.

[43]  Hector Garcia-Molina,et al.  Improving search in peer-to-peer networks , 2002, Proceedings 22nd International Conference on Distributed Computing Systems.

[44]  Miguel Castro,et al.  Scribe: a large-scale and decentralized application-level multicast infrastructure , 2002, IEEE J. Sel. Areas Commun..

[45]  Scott Shenker,et al.  Can Heterogeneity Make Gnutella Scalable? , 2002, IPTPS.

[46]  David R. Karger,et al.  Analysis of the evolution of peer-to-peer systems , 2002, PODC '02.

[47]  Dan S. Wallach,et al.  A Survey of Peer-to-Peer Security Issues , 2002, ISSS.

[48]  John R. Douceur,et al.  The Sybil Attack , 2002, IPTPS.

[49]  Mark Handley,et al.  Topologically-aware overlay construction and server selection , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[50]  John Kubiatowicz,et al.  Probabilistic location and routing , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[51]  David R. Karger,et al.  Finding nearest neighbors in growth-restricted metrics , 2002, STOC '02.

[52]  Peter Druschel,et al.  Exploiting network proximity in peer-to-peer overlay networks , 2002 .

[53]  Robert Tappan Morris,et al.  Security Considerations for Peer-to-Peer Distributed Hash Tables , 2002, IPTPS.

[54]  Ramesh Govindan,et al.  Using the small-world model to improve Freenet performance , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[55]  Brian D. Noble,et al.  Proceedings of the 5th Symposium on Operating Systems Design and Implementation Pastiche: Making Backup Cheap and Easy , 2022 .

[56]  Antony I. T. Rowstron,et al.  Squirrel: a decentralized peer-to-peer web cache , 2002, PODC '02.

[57]  Hui Zhang,et al.  Predicting Internet network distance with coordinates-based approaches , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[58]  Xiaozhou Li,et al.  On name resolution in peer-to-peer networks , 2002, POMC '02.

[59]  David Mazières,et al.  Kademlia: A Peer-to-Peer Information System Based on the XOR Metric , 2002, IPTPS.

[60]  Miguel Castro,et al.  Secure routing for structured peer-to-peer overlay networks , 2002, OSDI '02.

[61]  Miguel Castro,et al.  SplitStream: high-bandwidth multicast in cooperative environments , 2003, SOSP '03.

[62]  Marcel Waldvogel,et al.  Efficient topology-aware overlay network , 2003, CCRV.

[63]  Michael B. Jones,et al.  SkipNet: A Scalable Overlay Network with Practical Locality Properties , 2003, USENIX Symposium on Internet Technologies and Systems.

[64]  Ben Y. Zhao,et al.  Towards a Common API for Structured Peer-to-Peer Overlays , 2003, IPTPS.

[65]  Krishna P. Gummadi,et al.  Measurement, modeling, and analysis of a peer-to-peer file-sharing workload , 2003, SOSP '03.

[66]  Seif Haridi,et al.  DKS(N, k, f): a family of low communication, scalable and fault-tolerant infrastructures for P2P applications , 2003, CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 2003. Proceedings..

[67]  Divyakant Agrawal,et al.  A game theoretic framework for incentives in P2P systems , 2003, Proceedings Third International Conference on Peer-to-Peer Computing (P2P2003).

[68]  Moni Naor,et al.  A Simple Fault Tolerant Distributed Hash Table , 2003, IPTPS.

[69]  Mark Crovella,et al.  Virtual landmarks for the internet , 2003, IMC '03.

[70]  Jon Crowcroft,et al.  Lighthouses for Scalable Distributed Location , 2003, IPTPS.

[71]  David R. Karger,et al.  Chord: a scalable peer-to-peer lookup protocol for internet applications , 2003, TNET.

[72]  Ben Y. Zhao,et al.  Approximate Object Location and Spam Filtering on Peer-to-Peer Systems , 2003, Middleware.

[73]  Ion Stoica,et al.  Incentives for Cooperation in Peer-to-Peer Networks , 2003 .

[74]  Moni Naor,et al.  Novel architectures for P2P applications: the continuous-discrete approach , 2003, SPAA '03.

[75]  Hector Garcia-Molina,et al.  YAPPERS: a peer-to-peer lookup service over arbitrary topology , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[76]  David E. Culler,et al.  A blueprint for introducing disruptive technology into the Internet , 2003, CCRV.

[77]  Scott Shenker,et al.  Making gnutella-like P2P systems scalable , 2003, SIGCOMM '03.

[78]  Johan Pouwelse,et al.  A Measurement Study of the BitTorrent Peer-to-Peer File-Sharing System , 2004 .

[79]  Miguel Castro,et al.  PIC: practical Internet coordinates for distance estimation , 2004, 24th International Conference on Distributed Computing Systems, 2004. Proceedings..

[80]  Jon Crowcroft,et al.  Highways: proximity clustering for scalable peer-to-peer network , 2004 .

[81]  Lawrence K. Saul,et al.  Modeling distances in large-scale networks by matrix factorization , 2004, IMC '04.

[82]  Hector Garcia-Molina,et al.  Efficient search in peer to peer networks , 2004 .

[83]  Yuval Shavitt,et al.  Big-bang simulation for embedding network distances in Euclidean space , 2004, IEEE/ACM Transactions on Networking.

[84]  Ramesh Govindan,et al.  Using the small-world model to improve Freenet performance , 2004, Comput. Networks.

[85]  Robert Tappan Morris,et al.  Vivaldi: a decentralized network coordinate system , 2004, SIGCOMM '04.

[86]  Ittai Abraham,et al.  LAND: stretch (1 + epsilon) locality-aware networks for DHTs , 2004, ACM-SIAM Symposium on Discrete Algorithms.

[87]  R. Srikant,et al.  Modeling and performance analysis of BitTorrent-like peer-to-peer networks , 2004, SIGCOMM '04.

[88]  Karl Aberer,et al.  A Probabilistic Approach to Predict Peers? Performance in P2P Networks , 2004, CIA.

[89]  T. Plagemann,et al.  Analysis of BitTorrent and its use for the Design of a P 2 P based Streaming Protocol for a Hybrid CDN , 2004 .

[90]  Ben Y. Zhao,et al.  Tapestry: a resilient global-scale overlay for service deployment , 2004, IEEE Journal on Selected Areas in Communications.

[91]  John Kubiatowicz,et al.  Handling churn in a DHT , 2004 .

[92]  Jon Crowcroft,et al.  Highways: proximity clustering for scalable peer-to-peer network , 2004, Proceedings. Fourth International Conference on Peer-to-Peer Computing, 2004. Proceedings..

[93]  Scott Shenker,et al.  Spurring Adoption of DHTs with OpenHash, a Public DHT Service , 2004, IPTPS.

[94]  Miguel Castro,et al.  Performance and dependability of structured peer-to-peer overlays , 2004, International Conference on Dependable Systems and Networks, 2004.

[95]  Ion Stoica,et al.  The Case for a Hybrid P2P Search Infrastructure , 2004, IPTPS.

[96]  Miguel Castro,et al.  Defending against eclipse attacks on overlay networks , 2004, EW 11.

[97]  Jon Crowcroft,et al.  BarterRoam: A Novel Mobile and Wireless Roaming Settlement Model , 2004, QofIS.

[98]  Yuval Shavitt,et al.  On the curvature of the Internet and its usage for overlay construction and distance estimation , 2004, IEEE INFOCOM 2004.

[99]  Dmitri Loguinov,et al.  Graph-theoretic analysis of structured peer-to-peer systems: routing distances and fault resilience , 2003, IEEE/ACM Transactions on Networking.

[100]  Eng Keong Lua,et al.  Hierarchical peer-to-peer networks using lightweight superpeer topologies , 2005, 10th IEEE Symposium on Computers and Communications (ISCC'05).

[101]  Eng Keong Lua,et al.  A Case for Lightweight SuperPeer Topologies , 2005, KiVS Kurzbeiträge und Workshop.

[102]  Jon Crowcroft,et al.  On the accuracy of embeddings for internet coordinate systems , 2005, IMC '05.

[103]  Hyuk Lim,et al.  Constructing Internet coordinate system based on delay measurement , 2003, IEEE/ACM Transactions on Networking.