Improved frequency table’s measures of skewness and kurtosis with application to weather data

Abstract The statistic” Midpoint” used as a magnitude of observations in each class of a frequency table leads to biased estimates of the two measures of shape of a distribution, skewness, and kurtosis. This research proposed three new statistics, the mean, median, and midrange of observations in each class instead of the midpoint. Simulation results using samples from normal, uniform, exponential distributions, and the real Istanbul weather data indicated that measures that used the mean as a representative of observations in each class outperformed the other measures of skewness and kurtosis.

[1]  Roser Bono,et al.  Skewness and Kurtosis in Real Data Samples , 2013 .

[2]  D. Freedman,et al.  On the histogram as a density estimator:L2 theory , 1981 .

[3]  David P. Doane,et al.  Aesthetic Frequency Classifications , 1976 .

[4]  Dc Blest,et al.  A New Measure of Kurtosis Adjusted for Skewness , 2003 .

[5]  D. Joanes,et al.  Comparing measures of sample skewness and kurtosis , 1998 .

[6]  Roser Bono,et al.  Bias, Precision, and Accuracy of Skewness and Kurtosis Estimators for Frequently Used Continuous Distributions , 2019, Symmetry.

[7]  Brad S. Chissom,et al.  Interpretation of the Kurtosis Statistic , 1970 .

[8]  M. Hubert,et al.  A Robust Measure of Skewness , 2004 .

[9]  Herbert A. Sturges,et al.  The Choice of a Class Interval , 1926 .

[10]  John C. W. Rayner,et al.  Interpreting the skewness coefficient , 1995 .

[11]  Y. B. Wah,et al.  Comparison of conventional measures of skewness and kurtosis for small sample size , 2012, 2012 International Conference on Statistics in Science, Business and Engineering (ICSSBE).

[12]  Peter Hall,et al.  On the Removal of Skewness by Transformation , 1992 .

[13]  Distribution of asymmetric trimmed means , 1979 .

[14]  Kerstin M. Mueller Mcgraw Hill Dictionary Of Scientific And Technical Terms , 2016 .

[15]  David P. Doane,et al.  Measuring Skewness: A Forgotten Statistic? , 2011 .

[16]  H. White,et al.  On More Robust Estimation of Skewness and Kurtosis: Simulation and Application to the S&P500 Index , 2003 .

[17]  Richard A. Groeneveld,et al.  Measuring Skewness and Kurtosis , 1984 .

[18]  K. Delucchi,et al.  Methods for analysis of skewed data distributions in psychiatric clinical studies: working with many zero values. , 2004, The American journal of psychiatry.

[19]  D. W. Scott On optimal and data based histograms , 1979 .

[20]  T. Islam Ranking of Normality Tests—An Appraisal through Skewed Alternative Space , 2019 .

[21]  P. Moran,et al.  Mathematics of Statistics , 1948, Nature.

[22]  D. W. Scott,et al.  Oversmoothed Nonparametric Density Estimates , 1985 .

[23]  Stephen Warwick Looney,et al.  Diagnostic limitations of skewness coefficients in assessing departures from univariate and multivariate normality , 1993 .

[24]  Matteo Bonato,et al.  Robust Estimation of Skewness and Kurtosis in Distributions with Infinite Higher Moments , 2010 .

[25]  W. G. Cochran Some Methods for Strengthening the Common χ 2 Tests , 1954 .

[26]  Richard B. Darlington,et al.  Is Kurtosis Really “Peakedness?” , 1970 .

[27]  R. Hogg Adaptive Robust Procedures: A Partial Review and Some Suggestions for Future Applications and Theory , 1974 .

[28]  Arthur Pewsey,et al.  On Blest’s Measure of Kurtosis Adjusted for Skewness , 2015 .

[29]  Emilija Nikolić-Đorić,et al.  On measuring skewness and kurtosis , 2009 .

[30]  Edward H Livingston,et al.  The mean and standard deviation: what does it all mean? , 2004, The Journal of surgical research.

[31]  Estimation of Bowley's Coefficient of Skewness in the Presence of Auxiliary Information , 2014 .

[32]  Tanweer Ul Islam Ranking of Normality Tests: An Appraisal through Skewed Alternative Space , 2019, Symmetry.

[33]  M. Wand Data-Based Choice of Histogram Bin Width , 1997 .