Formulating Manipulable Argumentation with Intra-/Inter-Agent Preferences

From marketing to politics, exploitation of incomplete information through selective communication of arguments is ubiquitous. In this work, we focus on development of an argumentation-theoretic model for manipulable multi-agent argumentation, where each agent may transmit deceptive information to others for tactical motives. In particular, we study characterisation of epistemic states, and their roles in deception/honesty detection and (mis)trust-building. To this end, we propose the use of intra-agent preferences to handle deception/honesty detection and inter-agent preferences to determine which agent(s) to believe in more. We show how deception/honesty in an argumentation of an agent, if detected, would alter the agent's perceived trustworthiness, and how that may affect their judgement as to which arguments should be acceptable.

[1]  Nicolas Maudet,et al.  Optimization of Probabilistic Argumentation with Markov Decision Models , 2015, IJCAI.

[2]  Wiebe van der Hoek,et al.  Audience-Based Uncertainty in Abstract Argument Games , 2013, IJCAI.

[3]  Srdjan Vesic,et al.  Rich preference-based argumentation frameworks , 2014, Int. J. Approx. Reason..

[4]  Nir Oren,et al.  Arguing Using Opponent Models , 2009, ArgMAS.

[5]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[6]  Yannis Dimopoulos and Pavlos Moraitis Advances in Argumentation-Based Negotiation , 2014 .

[7]  Henry Prakken,et al.  Heuristics in Argumentation: A Game Theory Investigation , 2008, Comma.

[8]  Matthias Thimm,et al.  Strategic Argumentation in Multi-Agent Systems , 2014, KI - Künstliche Intelligenz.

[9]  Peter McBurney,et al.  Opponent Modelling in Persuasion Dialogues , 2013, IJCAI.

[10]  Ken Satoh,et al.  Abstract Argumentation / Persuasion / Dynamics , 2018, PRIMA.

[11]  Hirotaka Osawa,et al.  AI Wolf Contest - Development of Game AI Using Collective Intelligence - , 2016, CGW@IJCAI.

[12]  Nir Oren,et al.  Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Opponent Models with Uncertainty for Strategic Argumentation , 2022 .

[13]  Pietro Baroni,et al.  On principle-based evaluation of extension-based argumentation semantics , 2007, Artif. Intell..

[14]  Serena Villata,et al.  Multi-sorted Argumentation , 2011, TAFA.

[15]  Iyad Rahwan,et al.  Argumentation and Game Theory , 2009, Argumentation in Artificial Intelligence.

[16]  Elizabeth Sklar,et al.  How Agents Alter Their Beliefs After an Argumentation-Based Dialogue , 2005, ArgMAS.

[17]  Jörg Denzinger,et al.  Pitfalls in Practical Open Multi Agent Argumentation Systems: Malicious Argumentation , 2010, COMMA.

[18]  Anthony Hunter,et al.  Strategic Sequences of Arguments for Persuasion Using Decision Trees , 2017, AAAI.

[19]  Iyad Rahwan,et al.  Mechanism design for abstract argumentation , 2008, AAMAS.

[20]  Anthony Hunter,et al.  Towards a framework for computational persuasion with applications in behaviour change , 2018, Argument Comput..

[21]  Noam Chomsky Hopes and Prospects , 2000 .

[22]  Stefano Bistarelli,et al.  Defence Outsourcing in Argumentation , 2018, COMMA.

[23]  Chiaki Sakama Dishonest Arguments in Debate Games , 2012, COMMA.

[24]  Sarvapali D. Ramchurn,et al.  Argumentation-based negotiation , 2003, The Knowledge Engineering Review.

[25]  Hayley Hung,et al.  The idiap wolf corpus: exploring group behaviour in a competitive role-playing game , 2010, ACM Multimedia.

[26]  Kazuko Takahashi,et al.  On a Formal Treatment of Deception in Argumentative Dialogues , 2016, EUMAS/AT.

[27]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[28]  Leon van der Torre,et al.  Anything You Say May Be Used Against You in a Court of Law - Abstract Agent Argumentation (Triple-A) , 2017, AICOL.

[29]  Henry Prakken,et al.  Heuristics in Argumentation: A Game-Theoretical Investigation , 2008, COMMA 2008.

[30]  Nicolas Maudet,et al.  Modular Representation of Agent Interaction Rules through Argumentation , 2005, Autonomous Agents and Multi-Agent Systems.