Nucleotide switches in molecular motors: structural analysis of kinesins and myosins.

[1]  Mitsuo Ikebe,et al.  The core of the motor domain determines the direction of myosin movement , 2001, Nature.

[2]  J Guo,et al.  Crystal Structure of the Mitotic Spindle Kinesin Eg5 Reveals a Novel Conformation of the Neck-linker* , 2001, The Journal of Biological Chemistry.

[3]  Masahide Kikkawa,et al.  Switch-based mechanism of kinesin motors , 2001, Nature.

[4]  Toshio Yanagida,et al.  Substeps within the 8-nm step of the ATPase cycle of single kinesin molecules , 2001, Nature Cell Biology.

[5]  S. Ishiwata,et al.  Nucleotide-dependent single- to double-headed binding of kinesin. , 2001, Science.

[6]  H M Holden,et al.  X-ray Structures of the Apo and MgATP-bound States ofDictyostelium discoideum Myosin Motor Domain* , 2000, The Journal of Biological Chemistry.

[7]  Niels Volkmann,et al.  Evidence for cleft closure in actomyosin upon ADP release , 2000, Nature Structural Biology.

[8]  R. Vale,et al.  Controlling Kinesin by Reversible Disulfide Cross-linking : Identifying the Motility-producing Conformational Change ✪ , 2000 .

[9]  Ronald D. Vale,et al.  Engineering the Processive Run Length of the Kinesin Motor , 2000, The Journal of cell biology.

[10]  A. Houdusse,et al.  Three conformational states of scallop myosin S1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  H. Higuchi,et al.  A mutant of the motor protein kinesin that moves in both directions on microtubules , 2000, Nature.

[12]  John Trinick,et al.  Two-headed binding of a processive myosin to F-actin , 2000, Nature.

[13]  M. F. Stock,et al.  Kinesin’s IAK tail domain inhibits initial microtubule-stimulated ADP release , 2000, Nature Cell Biology.

[14]  R. Fletterick,et al.  Searching for kinesin's mechanical amplifier. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[15]  R. Vale,et al.  The way things move: looking under the hood of molecular motor proteins. , 2000, Science.

[16]  M. Schliwa,et al.  Directional motility of kinesin motor proteins. , 2000, Biochimica et biophysica acta.

[17]  E. Sablin,et al.  Kinesins and microtubules: their structures and motor mechanisms. , 2000, Current opinion in cell biology.

[18]  Ronald D. Vale,et al.  Role of the kinesin neck linker and catalytic core in microtubule-based motility , 2000, Current Biology.

[19]  Masahide Kikkawa,et al.  15 Å Resolution Model of the Monomeric Kinesin Motor, KIF1A , 2000, Cell.

[20]  N. Hirokawa,et al.  Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Roger Cooke,et al.  A structural change in the kinesin motor protein that drives motility , 1999, Nature.

[22]  F. Kozielski,et al.  The crystal structure of the minus-end-directed microtubule motor protein ncd reveals variable dimer conformations. , 1999, Structure.

[23]  C. Yengo,et al.  Intrinsic tryptophan fluorescence identifies specific conformational changes at the actomyosin interface upon actin binding and ADP release. , 1999, Biochemistry.

[24]  Daniel Safer,et al.  Myosin VI is an actin-based motor that moves backwards , 1999, Nature.

[25]  Matthias Rief,et al.  Myosin-V is a processive actin-based motor , 1999, Nature.

[26]  M. Irving,et al.  Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction , 1999, Nature.

[27]  Mark J. Schnitzer,et al.  Single kinesin molecules studied with a molecular force clamp , 1999, Nature.

[28]  A. Houdusse,et al.  Atomic Structure of Scallop Myosin Subfragment S1 Complexed with MgADP A Novel Conformation of the Myosin Head , 1999, Cell.

[29]  N. Hirokawa,et al.  A processive single-headed motor: kinesin superfamily protein KIF1A. , 1999, Science.

[30]  J. Howard,et al.  Kinesin Takes One 8-nm Step for Each ATP That It Hydrolyzes* , 1999, The Journal of Biological Chemistry.

[31]  E. Mandelkow,et al.  Structures, variations, and nucleotide binding sites , 1999 .

[32]  K C Holmes,et al.  Structural mechanism of muscle contraction. , 1999, Annual review of biochemistry.

[33]  Ronald D. Vale,et al.  Direction determination in the minus-end-directed kinesin motor ncd , 1998, Nature.

[34]  Roberto Dominguez,et al.  Crystal Structure of a Vertebrate Smooth Muscle Myosin Motor Domain and Its Complex with the Essential Light Chain Visualization of the Pre–Power Stroke State , 1998, Cell.

[35]  S. Endow,et al.  Determinants of kinesin motor polarity. , 1998, Science.

[36]  E. Mandelkow,et al.  Image Reconstructions of Microtubules Decorated with Monomeric and Dimeric Kinesins: Comparison with X-Ray Structure and Implications for Motility , 1998, The Journal of cell biology.

[37]  Ronald D. Vale,et al.  Role of the Kinesin Neck Region in Processive Microtubule-based Motility , 1998, The Journal of cell biology.

[38]  I. Rayment,et al.  X-ray crystal structure of the yeast Kar3 motor domain complexed with Mg.ADP to 2.3 A resolution. , 1998, Biochemistry.

[39]  E. Mandelkow,et al.  The Crystal Structure of Dimeric Kinesin and Implications for Microtubule-Dependent Motility , 1997, Cell.

[40]  E. Mandelkow,et al.  X-ray structure of motor and neck domains from rat brain kinesin. , 1997, Biochemistry.

[41]  Clive R. Bagshaw,et al.  X-ray crystal structure and solution fluorescence characterization of Mg.2'(3')-O-(N-methylanthraniloyl) nucleotides bound to the Dictyostelium discoideum myosin motor domain. , 1997, Journal of molecular biology.

[42]  I. Rayment,et al.  X-ray structures of the MgADP, MgATPgammaS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain. , 1997, Biochemistry.

[43]  Ronald D Vale,et al.  The Directional Preference of Kinesin Motors Is Specified by an Element outside of the Motor Catalytic Domain , 1997, Cell.

[44]  M. Schliwa,et al.  Reversal in the direction of movement of a molecular motor , 1997, Nature.

[45]  T. Burghardt,et al.  Probes bound to myosin Cys-707 rotate during length transients in contraction. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[46]  R J Fletterick,et al.  The design plan of kinesin motors. , 1997, Annual review of cell and developmental biology.

[47]  J. Corrie,et al.  Fluorescence polarization of skeletal muscle fibers labeled with rhodamine isomers on the myosin heavy chain. , 1996, Biophysical journal.

[48]  R. Vale,et al.  Switches, latches, and amplifiers: common themes of G proteins and molecular motors , 1996, The Journal of cell biology.

[49]  R. Fletterick,et al.  Three-dimensional structure of the motor domain of NCD, a kinesin-related motor with reversed polarity of movement , 1996 .

[50]  J. Spudich,et al.  The neck region of the myosin motor domain acts as a lever arm to generate movement. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[51]  C A Smith,et al.  X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. , 1996, Biochemistry.

[52]  Ronald D. Vale,et al.  Crystal structure of the kinesin motor domain reveals a structural similarity to myosin , 1996, Nature.

[53]  Toshio Yanagida,et al.  Direct observation of single kinesin molecules moving along microtubules , 1996, Nature.

[54]  R A Milligan,et al.  Protein-protein interactions in the rigor actomyosin complex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Michael Whittaker,et al.  A 35-Å movement of smooth muscle myosin on ADP release , 1995, Nature.

[56]  I. Rayment,et al.  X-ray structure of the magnesium(II)-pyrophosphate complex of the truncated head of Dictyostelium discoideum myosin to 2.7 A resolution. , 1995, Biochemistry.

[57]  H M Holden,et al.  X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. , 1995, Biochemistry.

[58]  A. Fisher,et al.  Structural studies of myosin:nucleotide complexes: a revised model for the molecular basis of muscle contraction. , 1995, Biophysical journal.

[59]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[60]  Ivan Rayment,et al.  Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1 , 1993, Nature.

[61]  R A Milligan,et al.  Structure of the actin-myosin complex and its implications for muscle contraction. , 1993, Science.

[62]  D A Winkelmann,et al.  Three-dimensional structure of myosin subfragment-1: a molecular motor. , 1993, Science.