Controlling the formation of DNA origami structures with external signals.

Degradable Newkome-type and polylysine dendrons functionalized with spermine surface units are used to control the formation of DNA origami structures. The intact dendrons form polyelectrolyte complexes with the scaffold strands, therefore blocking the origami formation. Degradation of the dendron with an optical trigger or chemical reduction leads to the release of the DNA scaffold and efficient formation of the desired origami structure. These results provide new insights towards realizing responsive materials with DNA origami.

[1]  Akinori Kuzuya,et al.  Discrete and active enzyme nanoarrays on DNA origami scaffolds purified by affinity tag separation. , 2010, Journal of the American Chemical Society.

[2]  S. Hillier,et al.  Preclinical Safety and Efficacy Assessments of Dendrimer-Based (SPL7013) Microbicide Gel Formulations in a Nonhuman Primate Model , 2006, Antimicrobial Agents and Chemotherapy.

[3]  J. Hardy,et al.  High-affinity multivalent DNA binding by using low-molecular-weight dendrons. , 2005, Angewandte Chemie.

[4]  P. Rothemund,et al.  Programmable molecular recognition based on the geometry of DNA nanostructures. , 2011, Nature chemistry.

[5]  R. Nolte,et al.  Self-assembly and optically triggered disassembly of hierarchical dendron-virus complexes. , 2010, Nature chemistry.

[6]  Hao Yan,et al.  DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. , 2010, Angewandte Chemie.

[7]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[8]  Antti-Pekka Eskelinen,et al.  Assembly of single-walled carbon nanotubes on DNA-origami templates through streptavidin-biotin interaction. , 2011, Small.

[9]  P. Kitov,et al.  On the nature of the multivalency effect: a thermodynamic model. , 2003, Journal of the American Chemical Society.

[10]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[11]  Bernard Yurke,et al.  Dielectrophoretic trapping of DNA origami. , 2008, Small.

[12]  Hao Yan,et al.  Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. , 2008, Nature nanotechnology.

[13]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[14]  D. Reinhoudt,et al.  Multivalency in supramolecular chemistry and nanofabrication. , 2004, Organic & biomolecular chemistry.

[15]  Hao Yan,et al.  Immobilization and one-dimensional arrangement of virus capsids with nanoscale precision using DNA origami. , 2010, Nano letters.

[16]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[17]  O. Ikkala,et al.  Optically triggered release of DNA from multivalent dendrons by degrading and charge-switching multivalency. , 2007, Angewandte Chemie.

[18]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[19]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[20]  Hao Yan,et al.  Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. , 2007, Journal of the American Chemical Society.

[21]  Päivi Törmä,et al.  DNA origami as a nanoscale template for protein assembly , 2009, Nanotechnology.

[22]  O. Ikkala,et al.  Supramolecular Materials Based On Hydrogen-Bonded Polymers , 2007 .

[23]  Liao,et al.  Photolabile dendrimers using o-nitrobenzyl ether linkages , 2000, Organic letters.

[24]  Jennifer N Cha,et al.  Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. , 2010, Nature nanotechnology.

[25]  L. Grohskopf,et al.  Transmission Immunodeficiency Virus Type 1 Microbicides for Prevention of Human In Vitro Comparison of Topical , 2004 .

[26]  D. Ingber,et al.  Self-assembly of 3D prestressed tensegrity structures from DNA , 2010, Nature nanotechnology.

[27]  A. Caminade,et al.  Dendrimers and nanomedicine: multivalency in action , 2009 .

[28]  Daniel J. Welsh,et al.  "On-off" multivalent recognition: degradable dendrons for temporary high-affinity DNA binding. , 2009, Angewandte Chemie.

[29]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[30]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[31]  Thomas Tørring,et al.  Functional patterning of DNA origami by parallel enzymatic modification. , 2011, Bioconjugate chemistry.

[32]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[33]  G. Pavan,et al.  Optically degradable dendrons for temporary adhesion of proteins to DNA. , 2010, Chemistry.

[34]  N. Turro,et al.  Using Ethidium Bromide To Probe the Interactions between DNA and Dendrimers , 2000 .

[35]  J. F. Stoddart,et al.  Multivalency and cooperativity in supramolecular chemistry. , 2005, Accounts of chemical research.

[36]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[37]  Michael J. Campolongo,et al.  Building plasmonic nanostructures with DNA. , 2011, Nature nanotechnology.

[38]  M. Kostiainen,et al.  Low-molecular-weight dendrons for DNA binding and release by reduction-triggered degradation of multivalent interactions. , 2009, Chemistry.

[39]  Andrew J. Turberfield DNA nanotechnology: geometrical self-assembly. , 2011, Nature chemistry.

[40]  L. Twyman,et al.  Dendrimers as size selective inhibitors to protein-protein binding. , 2008, Chemical communications.

[41]  Olli Ikkala,et al.  Precisely defined protein-polymer conjugates: construction of synthetic DNA binding domains on proteins by using multivalent dendrons. , 2007, ACS nano.

[42]  N. Seeman,et al.  Crystalline two-dimensional DNA-origami arrays. , 2011, Angewandte Chemie.

[43]  Thomas Tørring,et al.  DNA origami: a quantum leap for self-assembly of complex structures. , 2011, Chemical Society reviews.

[44]  H. W. Scheeren,et al.  "Cascade-release dendrimers" liberate all end groups upon a single triggering event in the dendritic core. , 2003, Angewandte Chemie.

[45]  Sabrina Pricl,et al.  Quantifying the effect of surface ligands on dendron-DNA interactions: insights into multivalency through a combined experimental and theoretical approach. , 2010, Chemistry.

[46]  Ryan J. Kershner,et al.  Placement and orientation of individual DNA shapes on lithographically patterned surfaces. , 2009, Nature nanotechnology.