The formal series Witt transform

Given a formal power series f(z)@[email protected][email protected]? we define, for any positive integer r, its rth Witt transform, W"f^(^r^), by W"f^(^r^)(z)[email protected]?"d"|"[email protected](d)f(z^d)^r^/^d, where @m denotes the Mobius function. The Witt transform generalizes the necklace polynomials, M(@a;n), that occur in the cyclotomic [email protected][email protected]?n=1~(1-y^n)^-^M^(^@a^;^n^).Several properties of W"f^(^r^) are established. Some examples relevant to number theory are considered.

[1]  G. Rota,et al.  Witt vectors and the algebra of necklaces , 1983 .

[2]  P. Moree Convoluted convolved Fibonacci numbers , 2003, math/0311205.

[3]  On the distribution of the order and index of g(modp) over residue classes II , 2004, math/0404339.

[4]  B. M. Fulk MATH , 1992 .

[5]  C. Reutenauer Free Lie Algebras , 1993 .

[6]  The Cycle Enumerator of Unimodal Permutations , 2001, math/0102051.

[7]  Thomas Ward,et al.  Arithmetic and growth of periodic orbits , 1999, math/9907003.

[8]  Pentti Haukkanen,et al.  An abstract Möbius inversion formula with number-theoretic applications , 1995, Discret. Math..

[9]  M. Hall The Theory Of Groups , 1959 .

[10]  Arithmetic partition sums and orbits of Z_n^k under the symmetric group S_k , 2001, math/0106267.

[11]  G. Viennot Algèbres de Lie Libres et Monoïdes Libres , 1978 .

[12]  Pieter Moree,et al.  Approximation of singular series and automata , 2000 .

[13]  Cristian Lenart Formal Group-Theoretic Generalizations of the Necklace Algebra, Including aq-Deformation , 1998 .

[14]  K. G. Ramanathan Some applications of Ramanujan’s trigonometrical sumCm(n) , 1944 .

[15]  Seok-Jin Kang,et al.  Dimension formula for graded Lie algebras and its applications , 1999 .

[16]  U MichaelE.Hoffman The Algebra of Multiple Harmonic Series , 1997 .

[17]  Ira M. Gessel,et al.  Counting Permutations with Given Cycle Structure and Descent Set , 1993, J. Comb. Theory A.

[18]  Pieter Moree On the average number of elements in a finite field with order or index in a prescribed residue class , 2004, Finite Fields Their Appl..

[19]  F. Pappalardi On Hooley's Theorem with weights. Rend. Sem. Mat. Polit. Univ. Torino 53 No. 4 (1995) 375-388. * , 1995 .

[20]  V. M. Petrogradsky,et al.  Witt's formula for restricted Lie algebras , 2003, Adv. Appl. Math..

[21]  Tero Harju,et al.  Combinatorics on Words , 2004 .

[22]  On the distribution of the order and index of g(mod p) over residue classes , 2002, math/0211259.

[23]  A. Oppenheim,et al.  On an Arithmetic Function , 1926 .

[24]  Seok-Jin Kang,et al.  Free Lie Algebras, Generalized Witt Formula, and the Denominator Identity☆ , 1996 .

[25]  Michael E. Hoffman,et al.  The Algebra of Multiple Harmonic Series , 1997 .

[26]  Niedere Zahlentheorie , 1911 .

[27]  M. Jibladze,et al.  Combinatorics of Necklaces and “Hermite Reciprocity” , 1999 .

[28]  W. B. History of the Theory of Numbers , Nature.

[29]  E. Witt,et al.  Treue Darstellung Liescher Ringe. , 1937 .