Ground strains induced by the 2022 Hunga-Tonga volcanic eruption, observed by a 1500-m laser strainmeter at Kamioka, Japan

[1]  Y. Imanishi,et al.  Detection of Air Temperature and Wind Changes Synchronized With the Lamb Wave From the 2022 Tonga Volcanic Eruption , 2023, Geophysical Research Letters.

[2]  S. Dolgikh,et al.  Atmospheric and Deformation Disturbances Caused by the Hunga-Tonga-Hunga-Ha’apai Volcano , 2022, Doklady Earth Sciences.

[3]  A. Araya,et al.  Response of the underground environment of the KAGRA observatory against the air-pressure disturbance from the Tonga volcano eruption on January 15th, 2022 , 2022, 2206.14396.

[4]  A. Komjathy,et al.  Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga , 2022, Science.

[5]  Y. Imanishi Inertial effects due to eruption-induced atmospheric disturbances identified by superconducting gravimeter observations at Matsushiro, Japan , 2022, Earth, Planets and Space.

[6]  A. Gubler,et al.  Worldwide Signature of the 2022 Tonga Volcanic Tsunami , 2022, Geophysical Research Letters.

[7]  A. Coster,et al.  2022 Tonga Volcanic Eruption Induced Global Propagation of Ionospheric Disturbances via Lamb Waves , 2022, Frontiers in Astronomy and Space Sciences.

[8]  A. Canitano Observation and Theory of Strain–Infrasound Coupling during Ground-Coupled Infrasound Generated by Rayleigh Waves in the Longitudinal Valley (Taiwan) , 2020 .

[9]  H.Zhang,et al.  Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer , 2020, Progress of Theoretical and Experimental Physics.

[10]  Y.Fujii,et al.  Overview of KAGRA: Detector design and construction history , 2020, Progress of Theoretical and Experimental Physics.

[11]  T.Narita,et al.  Construction of KAGRA: an Underground Gravitational Wave Observatory , 2017, 1712.00148.

[12]  B. Chao,et al.  Typhoon‐Induced Ground Deformation , 2017 .

[13]  A. Araya,et al.  Design and operation of a 1500-m laser strainmeter installed at an underground site in Kamioka, Japan , 2017, Earth, Planets and Space.

[14]  W. Zürn,et al.  High-quality lowest-frequency normal mode strain observations at the Black Forest Observatory (SW-Germany) and comparison with horizontal broad-band seismometer data and synthetics , 2015 .

[15]  Gordon G. Sorrells,et al.  A Preliminary Investigation into the Relationship between Long-Period Seismic Noise and Local Fluctuations in the Atmospheric Pressure Field , 2010 .

[16]  A. Gebauer,et al.  Finite element modelling of atmosphere loading effects on strain, tilt and displacement at multi-sensor stations , 2010 .

[17]  G. Mentes,et al.  Relations between microbarograph and strain data , 2009 .

[18]  Thomas Jahr,et al.  On reduction of long-period horizontal seismic noise using local barometric pressure , 2007 .

[19]  T. Jahr,et al.  Pressure-induced noise on horizontal seismometer and strainmeter records evaluated by finite element modelling , 2005 .

[20]  A. Araya,et al.  Iodine-stabilized Nd : YAG laser applied to a long-baseline interferometer for wideband earth strain observations , 2002 .

[21]  M. Ooe,et al.  GOTIC2: A Program for Computation of Oceanic Tidal Loading Effect , 2001 .

[22]  Duncan Carr Agnew,et al.  Strainmeters and tiltmeters , 1986 .

[23]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[24]  Jack A. Gilbert,et al.  finite element modelling , 2017 .

[25]  H. Steffen,et al.  Numerical modelling of the barometric pressure-induced noise in horizontal components for the observatories Moxa and Schiltach , 2006 .

[26]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..