Scaling up Probabilistic Inference in Linear and Non-Linear Hybrid Domains by Leveraging Knowledge Compilation

Weighted model integration (WMI) extends weighted model counting (WMC) in providing a computational abstraction for probabilistic inference in mixed discrete-continuous domains. WMC has emerged as an assembly language for state-of-the-art reasoning in Bayesian networks, factor graphs, probabilistic programs and probabilistic databases. In this regard, WMI shows immense promise to be much more widely applicable, especially as many real-world applications involve attribute and feature spaces that are continuous and mixed. Nonetheless, state-of-the-art tools for WMI are limited and less mature than their propositional counterparts. In this work, we propose a new implementation regime that leverages propositional knowledge compilation for scaling up inference. In particular, we use sentential decision diagrams, a tractable representation of Boolean functions, as the underlying model counting and model enumeration scheme. Our regime performs competitively to state-of-the-art WMI systems but is also shown to handle a specific class of non-linear constraints over non-linear potentials.

[1]  Toniann Pitassi,et al.  Solving #SAT and Bayesian Inference with Backtracking Search , 2014, J. Artif. Intell. Res..

[2]  Henry A. Kautz,et al.  Performing Bayesian Inference by Weighted Model Counting , 2005, AAAI.

[3]  Andrea Passerini,et al.  Efficient Weighted Model Integration via SMT-Based Predicate Abstraction , 2017, IJCAI.

[4]  Adnan Darwiche,et al.  On probabilistic inference by weighted model counting , 2008, Artif. Intell..

[5]  Christopher Ré,et al.  Probabilistic databases , 2011, SIGA.

[6]  Scott Sanner,et al.  Symbolic Dynamic Programming for Discrete and Continuous State MDPs , 2011, UAI.

[7]  Luc De Raedt,et al.  Algebraic model counting , 2012, J. Appl. Log..

[8]  Jesús A. De Loera,et al.  How to integrate a polynomial over a simplex , 2008, Math. Comput..

[9]  Luc De Raedt,et al.  Compiling probabilistic logic programs into sentential decision diagrams , 2014 .

[10]  Bart Selman,et al.  Model Counting , 2021, Handbook of Satisfiability.

[11]  Prakash P. Shenoy,et al.  Inference in hybrid Bayesian networks using mixtures of polynomials , 2011, Int. J. Approx. Reason..

[12]  Adnan Darwiche,et al.  A Lower Bound on the Size of Decomposable Negation Normal Form , 2010, AAAI.

[13]  Adnan Darwiche,et al.  Dynamic Minimization of Sentential Decision Diagrams , 2013, AAAI.

[14]  Bart Selman,et al.  A New Approach to Model Counting , 2005, SAT.

[15]  Jesús A. De Loera,et al.  Software for exact integration of polynomials over polyhedra , 2012, ACCA.

[16]  Luc De Raedt,et al.  Inference and learning in probabilistic logic programs using weighted Boolean formulas , 2013, Theory and Practice of Logic Programming.

[17]  Enrico Macii,et al.  Algebric Decision Diagrams and Their Applications , 1997, ICCAD '93.

[18]  Luc De Raedt,et al.  Exact and Approximate Weighted Model Integration with Probability Density Functions Using Knowledge Compilation , 2019, AAAI.

[19]  Pedro M. Domingos,et al.  Sum-product networks: A new deep architecture , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[20]  Guy Van den Broeck,et al.  Tractable Learning for Complex Probability Queries , 2015, NIPS.

[21]  Adnan Darwiche,et al.  New Advances in Compiling CNF into Decomposable Negation Normal Form , 2004, ECAI.

[22]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[23]  Pierre Marquis,et al.  A Knowledge Compilation Map , 2002, J. Artif. Intell. Res..

[24]  Guy Van den Broeck,et al.  Probabilistic Inference in Hybrid Domains by Weighted Model Integration , 2015, IJCAI.

[25]  Vaishak Belle,et al.  Weighted Model Counting With Function Symbols , 2017, UAI.

[26]  Christian J. Muise,et al.  Dsharp: Fast d-DNNF Compilation with sharpSAT , 2012, Canadian Conference on AI.

[27]  Guy Van den Broeck,et al.  Learning the Structure of Probabilistic Sentential Decision Diagrams , 2017, UAI.

[28]  Toby Walsh,et al.  Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications , 2009 .

[29]  Scott Sanner,et al.  Efficient Symbolic Integration for Probabilistic Inference , 2018, IJCAI.

[30]  Guy Van den Broeck,et al.  Component Caching in Hybrid Domains with Piecewise Polynomial Densities , 2016, AAAI.

[31]  Adnan Darwiche,et al.  Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence SDD: A New Canonical Representation of Propositional Knowledge Bases , 2022 .

[32]  Albert Oliveras,et al.  SMT Techniques for Fast Predicate Abstraction , 2006, CAV.

[33]  Guy Van den Broeck,et al.  Probabilistic Sentential Decision Diagrams , 2014, KR.

[34]  Rupak Majumdar,et al.  Approximate counting in SMT and value estimation for probabilistic programs , 2014, Acta Informatica.

[35]  Aws Albarghouthi,et al.  Quantifying Program Bias , 2017, ArXiv.

[36]  Guy Van den Broeck,et al.  On the Role of Canonicity in Knowledge Compilation , 2015, AAAI.

[37]  Jesús A. De Loera,et al.  Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..

[38]  Craig Boutilier,et al.  Context-Specific Independence in Bayesian Networks , 1996, UAI.

[39]  Luc De Raedt,et al.  How to Exploit Structure while Solving Weighted Model Integration Problems , 2019, UAI.

[40]  Adnan Darwiche,et al.  Compiling Probabilistic Graphical Models Using Sentential Decision Diagrams , 2013, ECSQARU.

[41]  Ciaran O'Reilly,et al.  Probabilistic Inference Modulo Theories , 2016, IJCAI.

[42]  Cesare Tinelli,et al.  Satisfiability Modulo Theories , 2021, Handbook of Satisfiability.