A reactive force-field (ReaxFF) Monte Carlo study of surface enrichment and step structure on yttria-stabilized zirconia

To investigate surface segregation in yttria-stabilized zirconia (YSZ), DFT energies describing surface energy as a function of yttrium lattice position were used to parameterize a reactive-force field (ReaxFF). We used ReaxFF to perform Monte Carlo (MC) simulated annealing to sample structural configurations of flat YSZ (111) and vicinal YSZ (111) stepped surfaces. We evaluated yttrium surface segregation, oxygen vacancy position, and surface step composition for flat and stepped YSZ surfaces. It is thermodynamically favorable for yttrium atoms to segregate to the surface of YSZ, and specifically to step edge sites. Surface saturation of yttrium occurs at approximately 40% (40:60 Y:Zr ratio) while yttrium concentration at the step edge does not approach a saturation value, suggesting that steps on the YSZ surface are mainly yttria-terminated. We found that it is thermodynamically favorable for oxygen vacancies to occupy positions in the subsurface layer of YSZ, and a higher fraction of vacancies occupy positions NN to Y than NN to Zr. Yttrium segregation to step edges on the YSZ surface does not lower the surface formation energy of the stepped surface below that of the flat (111) termination, suggesting that the stability of YSZ surface steps observed experimentally is due to kinetic barriers for surface re-ordering.

[1]  D. Majumdar,et al.  X-ray photoelectron spectroscopic studies on yttria-stabilized zirconia and its surface transformations , 1991 .

[2]  B. Dunn,et al.  Structure of additives in β″-alumina and zirconia superionic conductors , 1986 .

[3]  I. Chen,et al.  Effect of Dopants on Zirconia Stabilization—An X‐ray Absorption Study: I, Trivalent Dopants , 1994 .

[4]  B. Steele Materials for high-temperature fuel cells , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  A. Nelson,et al.  Methane Oxidation Over M–8YSZ and M–CeO2/8YSZ (M = Ni, Cu, Co, Ag) Catalysts , 2006 .

[6]  L. P. Van,et al.  Evolution of yttria-stabilized zirconia (100) surface morphology with temperature , 2004 .

[7]  M. Janik,et al.  Ab initio thermodynamic evaluation of Pd atom interaction with CeO(2) surfaces. , 2009, The Journal of chemical physics.

[8]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[9]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[10]  William A Goddard,et al.  The ReaxFF Monte Carlo reactive dynamics method for predicting atomistic structures of disordered ceramics: application to the Mo(3)VO(x) catalyst. , 2009, Angewandte Chemie.

[11]  Matthias Scheffler,et al.  Composition, structure, and stability of RuO2(110) as a function of oxygen pressure , 2001 .

[12]  M. Batzill,et al.  High temperature scanning tunneling microscopy of purely ion conducting yttria stabilized zirconia (YSZ) , 2009 .

[13]  M. Shishkin,et al.  The Oxidation of H2 and CH4 on an Oxygen-Enriched Yttria-Stabilized Zirconia Surface: A Theoretical Study Based on Density Functional Theory , 2008 .

[14]  H. Dexpert,et al.  X-ray absorption study of the ZrO2Y2O3 system , 1987 .

[15]  J. Nowotny Interface defect chemistry of oxide ceramic materials. Unresolved problems , 1991 .

[16]  Richard Catlow,et al.  Computational Modeling Study of Bulk and Surface of Yttria-Stabilized Cubic Zirconia , 2009 .

[17]  Yttrium segregation and surface phases of yttria-stabilized zirconia (111) surface , 2008 .

[18]  Heon-Do Kim,et al.  Low temperature oxygen sensor using YSZ‖β-β alumina bielectrolyte , 2005 .

[19]  W. Bessler,et al.  Modelling Study of Surface Reactions, Diffusion, and Spillover at a Ni/YSZ Patterned Anode , 2009 .

[20]  L. M. Rodriguez-Martinez,et al.  Influence of SDC–YSZ Contact at Different Atmospheres in SOFC Operation and Processing Conditions , 2009 .

[21]  Debasis Majumdar,et al.  X‐ray photoelectron spectroscopic studies on yttria, zirconia, and yttria‐stabilized zirconia , 1991 .

[22]  M. A. Henderson,et al.  Mass Spectroscopy of Recoiled Ions, Secondary Ion Mass Spectroscopy, and Auger Electron Spectroscopy Investigation of Y2O3-Stabilized ZrO2(100) and (110) , 1999 .

[23]  T. G. Cooper,et al.  A computational study of the surface structure and reactivity of calcium fluoride , 2003 .

[24]  William A Goddard,et al.  ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia. , 2008, The journal of physical chemistry. A.

[25]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[26]  T. Etsell,et al.  Electrical properties of solid oxide electrolytes , 1970 .

[27]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[28]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[29]  C. Catlow,et al.  EXAFS Study of Yttria‐Stabilized Zirconia , 1986 .

[30]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[31]  M. Bernasconi,et al.  Ab initio study of yttria-stabilized cubic zirconia surfaces , 2004 .

[32]  Brian C. H. Steele,et al.  Oxygen transport and exchange in oxide ceramics , 1994 .