Charged anisotropic matter with a linear equation of state

We consider the general situation of a compact relativistic body with anisotropic pressures in the presence of the electromagnetic field. The equation of state for the matter distribution is linear and may be applied to strange stars with quark matter. Three classes of new exact solutions are found to the Einstein–Maxwell system. This is achieved by specifying a particular form for one of the gravitational potentials and the electric field intensity. We can regain anisotropic and isotropic models from our general class of solutions. A physical analysis indicates that the charged solutions describe realistic compact spheres with anisotropic matter distribution. The equation of state is consistent with dark energy stars and charged quark matter distributions. The masses and central densities correspond to realistic stellar objects in the general case when anisotropy and charge are present.

[1]  S. Maharaj,et al.  Analytical models for quark stars , 2007, 0712.1278.

[2]  S. Maharaj,et al.  Tikekar superdense stars in electric fields , 2007, gr-qc/0702102.

[3]  S. Maharaj,et al.  A class of relativistic stars with a linear equation of state , 2007, gr-qc/0702046.

[4]  S. Maharaj,et al.  Equation of state for anisotropic spheres , 2006 .

[5]  S. Maharaj,et al.  Exact models for isotropic matter , 2006, gr-qc/0602082.

[6]  S. Maharaj,et al.  Anisotropic static solutions in modelling highly compact bodies , 2006, gr-qc/0602030.

[7]  F. Lobo Stable dark energy stars , 2005, gr-qc/0508115.

[8]  R. Sharma,et al.  MAXIMUM MASS OF A CLASS OF COLD COMPACT STARS , 2005, gr-qc/0505144.

[9]  S. Maharaj,et al.  Compact anisotropic spheres with prescribed energy density , 2005, gr-qc/0504098.

[10]  Y. Gupta,et al.  On the general solution for a class of charged fluid spheres , 2005 .

[11]  B. C. Paul,et al.  A CORE-ENVELOPE MODEL OF COMPACT STARS , 2005 .

[12]  B. S. Ratanpal,et al.  CORE-ENVELOPE MODELS OF SUPERDENSE STAR WITH ANISOTROPIC ENVELOPE , 2005 .

[13]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[14]  T. Harko,et al.  Quark stars admitting a one parameter group of conformal motions , 2003, gr-qc/0309069.

[15]  M. Gleiser,et al.  Anisotropic Stars II: Stability , 2003, gr-qc/0303077.

[16]  T. Harko,et al.  Anisotropic stars in general relativity , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  Ranjan Sharma,et al.  COMPACT STARS: A CORE-ENVELOPE MODEL , 2002 .

[18]  T. Harko,et al.  An Exact Anisotropic Quark Star Model , 2002 .

[19]  B. Ivanov Static charged perfect fluid spheres in general relativity , 2002 .

[20]  S. Maharaj,et al.  General Solution for a Class of Static Charged Spheres , 2001 .

[21]  Ranjan Sharma,et al.  HER X-1: A QUARK–DIQUARK STAR? , 2001 .

[22]  M. Gleiser,et al.  Anisotropic Stars: Exact Solutions , 2000, astro-ph/0012265.

[23]  I. Bombaci,et al.  Strange stars with realistic quark vector interaction and density-dependent scalar potential. , 1999 .

[24]  G. P. Singh,et al.  INTERIOR REISSNER-NORDSTR ¨ OM METRIC ON SPHEROIDAL SPACE-TIMES , 1998 .

[25]  I. Bombaci,et al.  Strange stars with realistic quark vector interaction and phenomenological density-dependent scalar potential [Phys. Lett. B 438 (1998) 123] , 1998, astro-ph/9810065.

[26]  V. O. Thomas,et al.  Relativistic fluid sphere on pseudo-spheroidal space-time , 1998 .

[27]  L. Herrera,et al.  Jeans Mass for Anisotropic Matter , 1995 .

[28]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[29]  J. Skea,et al.  A realistic stellar model based on an ansatz of Duorah and Ray , 1989 .

[30]  L. Patel,et al.  A charged analogue of the Vaidya-Tikekar solution , 1987 .

[31]  E. Witten Cosmic separation of phases , 1984 .

[32]  M. C. Durgapal,et al.  New analytical stellar model in general relativity , 1983 .

[33]  J. J. Matese,et al.  New method for extracting static equilibrium configurations in general relativity , 1980 .

[34]  P. Letelier Anisotropic fluids with two-perfect-fluid components , 1980 .

[35]  E. Liang,et al.  Anisotropic spheres in general relativity , 1974 .

[36]  R. Sawyer Condensedπ−Phase in Neutron-Star Matter , 1972 .

[37]  M. Ruderman Pulsars: Structure and Dynamics , 1972 .