Charged anisotropic matter with a linear equation of state
暂无分享,去创建一个
[1] S. Maharaj,et al. Analytical models for quark stars , 2007, 0712.1278.
[2] S. Maharaj,et al. Tikekar superdense stars in electric fields , 2007, gr-qc/0702102.
[3] S. Maharaj,et al. A class of relativistic stars with a linear equation of state , 2007, gr-qc/0702046.
[4] S. Maharaj,et al. Equation of state for anisotropic spheres , 2006 .
[5] S. Maharaj,et al. Exact models for isotropic matter , 2006, gr-qc/0602082.
[6] S. Maharaj,et al. Anisotropic static solutions in modelling highly compact bodies , 2006, gr-qc/0602030.
[7] F. Lobo. Stable dark energy stars , 2005, gr-qc/0508115.
[8] R. Sharma,et al. MAXIMUM MASS OF A CLASS OF COLD COMPACT STARS , 2005, gr-qc/0505144.
[9] S. Maharaj,et al. Compact anisotropic spheres with prescribed energy density , 2005, gr-qc/0504098.
[10] Y. Gupta,et al. On the general solution for a class of charged fluid spheres , 2005 .
[11] B. C. Paul,et al. A CORE-ENVELOPE MODEL OF COMPACT STARS , 2005 .
[12] B. S. Ratanpal,et al. CORE-ENVELOPE MODELS OF SUPERDENSE STAR WITH ANISOTROPIC ENVELOPE , 2005 .
[13] S. Tremaine,et al. Galactic Dynamics , 2005 .
[14] T. Harko,et al. Quark stars admitting a one parameter group of conformal motions , 2003, gr-qc/0309069.
[15] M. Gleiser,et al. Anisotropic Stars II: Stability , 2003, gr-qc/0303077.
[16] T. Harko,et al. Anisotropic stars in general relativity , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[17] Ranjan Sharma,et al. COMPACT STARS: A CORE-ENVELOPE MODEL , 2002 .
[18] T. Harko,et al. An Exact Anisotropic Quark Star Model , 2002 .
[19] B. Ivanov. Static charged perfect fluid spheres in general relativity , 2002 .
[20] S. Maharaj,et al. General Solution for a Class of Static Charged Spheres , 2001 .
[21] Ranjan Sharma,et al. HER X-1: A QUARK–DIQUARK STAR? , 2001 .
[22] M. Gleiser,et al. Anisotropic Stars: Exact Solutions , 2000, astro-ph/0012265.
[23] I. Bombaci,et al. Strange stars with realistic quark vector interaction and density-dependent scalar potential. , 1999 .
[24] G. P. Singh,et al. INTERIOR REISSNER-NORDSTR ¨ OM METRIC ON SPHEROIDAL SPACE-TIMES , 1998 .
[25] I. Bombaci,et al. Strange stars with realistic quark vector interaction and phenomenological density-dependent scalar potential [Phys. Lett. B 438 (1998) 123] , 1998, astro-ph/9810065.
[26] V. O. Thomas,et al. Relativistic fluid sphere on pseudo-spheroidal space-time , 1998 .
[27] L. Herrera,et al. Jeans Mass for Anisotropic Matter , 1995 .
[28] Achim Weiss,et al. Stellar Structure and Evolution , 1990 .
[29] J. Skea,et al. A realistic stellar model based on an ansatz of Duorah and Ray , 1989 .
[30] L. Patel,et al. A charged analogue of the Vaidya-Tikekar solution , 1987 .
[31] E. Witten. Cosmic separation of phases , 1984 .
[32] M. C. Durgapal,et al. New analytical stellar model in general relativity , 1983 .
[33] J. J. Matese,et al. New method for extracting static equilibrium configurations in general relativity , 1980 .
[34] P. Letelier. Anisotropic fluids with two-perfect-fluid components , 1980 .
[35] E. Liang,et al. Anisotropic spheres in general relativity , 1974 .
[36] R. Sawyer. Condensedπ−Phase in Neutron-Star Matter , 1972 .
[37] M. Ruderman. Pulsars: Structure and Dynamics , 1972 .