Ab initio magnetocrystalline anisotropy at nanoscale: The case of FePt

The effect of the transition from bulk to nanoscale on the magnetocrystalline anisotropy (MCA) is studied from first principles for L10-ordered FePt nanoslabs and nanocrystals. It is shown that the nano size of slabs does not kill bulk MCA but may even slightly increase it. The effect of lattice parameter change on MCA is much stronger than that of slab thickness. The design of the shape of a nanocrystal may also be used to increase the MCA.

[1]  D. Alloyeau,et al.  Growth and structural properties of CuAg and CoPt bimetallic nanoparticles. , 2008, Faraday discussions.

[2]  M. Gruner Core-shell morphologies of FePt and CoPt nanoparticles: An ab initio comparison , 2010 .

[3]  2D arrays of CoPt nanocluster assemblies , 2005 .

[4]  T. Epicier,et al.  Measuring theL10chemical order parameter of a single CoPt nanoparticle smaller than 4 nm , 2011 .

[5]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[6]  Mircea R. Stan,et al.  Advances and Future Prospects of Spin-Transfer Torque Random Access Memory , 2010, IEEE Transactions on Magnetics.

[7]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[8]  Synthesis and magnetic properties of CoPt nanoparticles , 2004 .

[9]  Andrei V. Ruban,et al.  Surface segregation energies in transition-metal alloys , 1999 .

[10]  Sun,et al.  Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices , 2000, Science.

[11]  C. Vaz,et al.  Magnetism in ultrathin film structures , 2008 .

[12]  M. Farle,et al.  Multiply twinned morphologies of FePt and CoPt nanoparticles. , 2008, Physical review letters.

[13]  M. Gruner Chemical trends in structure and magnetism of bimetallic nanoparticles from atomistic calculations , 2010 .

[14]  J. Staunton,et al.  Long-range chemical order effects upon the magnetic anisotropy of FePt alloys from an ab initio electronic structure theory , 2004 .

[15]  J. Liu,et al.  Microstructures and magnetic alignment of L10 FePt nanoparticles , 2007 .

[16]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[17]  K. Albe,et al.  Lattice monte carlo simulations of FePt nanoparticles : Influence of size, composition, and surface segregation on order-disorder phenomena , 2005 .

[18]  K. Kern,et al.  Giant Magnetic Anisotropy of Single Cobalt Atoms and Nanoparticles , 2003, Science.

[19]  T. Epicier,et al.  Evidence ofL10chemical order in CoPt nanoclusters: Direct observation and magnetic signature , 2008 .

[20]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[21]  Alex Zunger,et al.  First-principles determination of low-temperature order and ground states of Fe-Ni, Fe-Pd, and Fe-Pt , 2009 .

[22]  C. Ricolleau,et al.  Size and shape effects on the order-disorder phase transition in CoPt nanoparticles. , 2009, Nature materials.

[23]  Moritz,et al.  Segregation and ordering at the (1 x 2) reconstructed Pt80Fe20(110) surface determined by low-energy electron diffraction. , 1991, Physical review. B, Condensed matter.

[24]  J. Crangle,et al.  Chemical and magnetic order in platinum-rich Pt + Fe alloys , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  Sungho Jin,et al.  Monolayer CoPt magnetic nanoparticle array using multiple thin film depositions , 2007 .

[26]  W. H. Butler,et al.  Temperature and particle-size dependence of the equilibrium order parameter of FePt alloys , 2005, cond-mat/0504702.

[27]  H. Boyen,et al.  Lowering of the L10 ordering temperature of FePt nanoparticles by He+ ion irradiation , 2007 .

[28]  Chandan Srivastava,et al.  Formation mechanism and composition distribution of FePt nanoparticles , 2007 .

[29]  Stefano Curtarolo,et al.  Surface segregation in nanoparticles from first principles: The case of FePt , 2009, 0905.2917.

[30]  G. Thompson,et al.  Grain boundary enrichment in the FePt polymorphic A1 to L1(0) phase transformation. , 2009, Ultramicroscopy.

[31]  T. Oda,et al.  Magnetic anisotropy of Fe/Pt (001) and Pt/Fe/Pt (001) using a first-principles approach , 2008 .

[32]  J. Hafner,et al.  Magneto-structural properties and magnetic anisotropy of small transition-metal clusters: a first-principles study , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  M. Asta,et al.  The nature of A1–L10 ordering transitions in alloy nanoparticles: A Monte Carlo study , 2006 .

[34]  S. Imada,et al.  Perpendicular magnetization of L10-ordered FePt films in the thinnest limit , 2007 .

[35]  Heechae Choi,et al.  Surface structures and magnetic anisotropies of a Fe/Pt (001) surface: An ab initio study , 2011 .

[36]  M. Mavrikakis,et al.  Surface segregation energies in low-index open surfaces of bimetallic transition metal alloys , 2009 .

[37]  D. Alloyeau,et al.  A TEM in situ experiment as a guideline for the synthesis of as-grown ordered CoPt nanoparticles , 2007 .

[38]  G. Rossi,et al.  Structure and chemical ordering in CoPt nanoalloys. , 2008, Faraday discussions.

[39]  H. Tolentino,et al.  Highly anisotropic epitaxial L10 FePt on Pt(001) , 2011 .

[40]  P. Gaunt,et al.  The magnetic properties of platinum cobalt near the equiatomic composition part I. the experimental data , 1966 .

[41]  Mark Asta,et al.  Equilibrium Monte Carlo simulations of A1-L10 ordering in FePt nanoparticles , 2005 .

[42]  M. Farle,et al.  Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. , 2008, Physical review letters.

[43]  R. Chepulskii,et al.  First-principles study of magnetic properties of L 1 0 -ordered MnPt and FePt alloys , 2010 .

[44]  P. Weinberger,et al.  LATTICE RELAXATION DRIVEN REORIENTATION TRANSITION IN NIN/CU(100) , 1999 .

[45]  D. Laughlin,et al.  The effects of Ag underlayer and Pt intermediate layers on the microstructure and magnetic properties of epitaxial FePt thin films , 2003 .

[46]  B. Jeyadevan,et al.  Structural and magnetic properties of monolayer film of CoPt nanoparticles synthesized by polyol process , 2005 .

[47]  P. Beccat,et al.  Monotonous concentration profile and reconstruction at Pt80Fe20(111): LEED study of a catalyst , 1990 .

[48]  E. Beaurepaire,et al.  CoPt nanoparticles deposited by electron beam evaporation , 2005 .

[49]  P. Erhart,et al.  Thermodynamics of L 1 0 ordering in FePt nanoparticles studied by Monte Carlo simulations based on an analytic bond-order potential , 2007 .

[50]  S. Curtarolo,et al.  Ab initio insights on the shapes of platinum nanocatalysts. , 2011, ACS nano.

[51]  J. Ferrer,et al.  Magnetic properties of small Pt-capped Fe, Co, and Ni clusters: A density functional theory study , 2009, 0907.2678.