Surface multigrid via intrinsic prolongation

This paper introduces a novel geometric multigrid solver for unstructured curved surfaces. Multigrid methods are highly efficient iterative methods for solving systems of linear equations. Despite the success in solving problems defined on structured domains, generalizing multigrid to unstructured curved domains remains a challenging problem. The critical missing ingredient is a prolongation operator to transfer functions across different multigrid levels. We propose a novel method for computing the prolongation for triangulated surfaces based on intrinsic geometry, enabling an efficient geometric multigrid solver for curved surfaces. Our surface multigrid solver achieves better convergence than existing multigrid methods. Compared to direct solvers, our solver is orders of magnitude faster. We evaluate our method on many geometry processing applications and a wide variety of complex shapes with and without boundaries. By simply replacing the direct solver, we upgrade existing algorithms to interactive frame rates, and shift the computational bottleneck away from solving linear systems.

[1]  KwangYun Wohn,et al.  A physically faithful multigrid method for fast cloth simulation , 2008, Comput. Animat. Virtual Worlds.

[2]  Richard Szeliski,et al.  Efficient preconditioning of laplacian matrices for computer graphics , 2013, ACM Trans. Graph..

[3]  Alec Jacobson,et al.  Cubic stylization , 2019, ACM Trans. Graph..

[4]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[5]  L. Kobbelt,et al.  Fast and Robust QEF Minimization using Probabilistic Quadrics , 2020, Comput. Graph. Forum.

[6]  Michael M. Kazhdan,et al.  Can Mean‐Curvature Flow be Modified to be Non‐singular? , 2012, Comput. Graph. Forum.

[7]  Dinesh Manocha,et al.  Successive Mappings: An Approach to Polygonal Mesh Simplification with Guaranteed Error Bounds , 2003, Int. J. Comput. Geom. Appl..

[8]  Alexandr Katrutsa,et al.  Black-box learning of multigrid parameters , 2020, J. Comput. Appl. Math..

[9]  Xin Tong,et al.  A scalable galerkin multigrid method for real-time simulation of deformable objects , 2019, ACM Trans. Graph..

[10]  Josiah Manson,et al.  Hierarchical Deformation of Locally Rigid Meshes , 2011, Comput. Graph. Forum.

[11]  H. Langtangen,et al.  Mixed Finite Elements , 2003 .

[12]  Ke Xu,et al.  Robust Edge-Preserved Surface Mesh Polycube Deformation , 2017, PG.

[13]  Olga Sorkine-Hornung,et al.  Mixed Finite Elements for Variational Surface Modeling , 2010, Comput. Graph. Forum.

[14]  Kun Zhou,et al.  Out-of-core multigrid solver for streaming meshes , 2009, ACM Trans. Graph..

[15]  Achi Brandt,et al.  Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition , 2011 .

[16]  Philippe Bekaert,et al.  A computational approach to simulate subsurface light diffusion in arbitrarily shaped objects , 2005, Graphics Interface.

[17]  Olga Sorkine-Hornung,et al.  Sparse cholesky updates for interactive mesh parameterization , 2020, ACM Trans. Graph..

[18]  Alec Jacobson,et al.  Seamless: seam erasure and seam-aware decoupling of shape from mesh resolution , 2017, ACM Trans. Graph..

[19]  Andrei Khodakovsky,et al.  Multilevel Solvers for Unstructured Surface Meshes , 2005, SIAM J. Sci. Comput..

[20]  Eftychios Sifakis,et al.  An efficient multigrid method for the simulation of high-resolution elastic solids , 2010, TOGS.

[21]  George M. Turkiyyah,et al.  Subdivision-based multilevel methods for large scale engineering simulation of thin shells , 2002, SMA '02.

[22]  James Demmel,et al.  Parallel Multigrid Solver for 3D Unstructured Finite Element Problems , 1999, SC.

[23]  Lin Shi,et al.  A fast multigrid algorithm for mesh deformation , 2006, ACM Trans. Graph..

[24]  Keenan Crane,et al.  Navigating intrinsic triangulations , 2019, ACM Trans. Graph..

[25]  Bruno Lévy,et al.  Hierarchical least squares conformal map , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[26]  Rüdiger Westermann,et al.  A real-time multigrid finite hexahedra method for elasticity simulation using CUDA , 2011, Simul. Model. Pract. Theory.

[27]  Eitan Grinspun,et al.  A Smoothness Energy without Boundary Distortion for Curved Surfaces , 2019, ACM Trans. Graph..

[28]  Stephen F. McCormick,et al.  Smoothed aggregation multigrid for cloth simulation , 2015, ACM Trans. Graph..

[29]  Shoaib Kamil,et al.  NASOQ , 2020, ACM Trans. Graph..

[30]  Junyu Lai,et al.  Fast and Scalable Solvers for the Fluid Pressure Equations with Separating Solid Boundary Conditions , 2020, Comput. Graph. Forum.

[31]  Huamin Wang,et al.  Parallel Multigrid for Nonlinear Cloth Simulation , 2018, Comput. Graph. Forum.

[32]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[33]  Markus H. Gross,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Adaptive Deformations with Fast Tight Bounds , 2022 .

[34]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[35]  Ryan Schmidt,et al.  meshmixer: an interface for rapid mesh composition , 2010, SIGGRAPH '10.

[36]  Mark Meyer,et al.  Subdivision exterior calculus for geometry processing , 2016, ACM Trans. Graph..

[37]  Daniele Panozzo,et al.  Fast tetrahedral meshing in the wild , 2019, ACM Trans. Graph..

[38]  Piet Hemker,et al.  On the order of prolongations and restrictions in multigrid procedures , 1990 .

[39]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[40]  Eftychios Sifakis,et al.  A parallel multigrid Poisson solver for fluids simulation on large grids , 2010, SCA '10.

[41]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[42]  Eftychios Sifakis,et al.  SPGrid: a sparse paged grid structure applied to adaptive smoke simulation , 2014, ACM Trans. Graph..

[43]  Mridul Aanjaneya,et al.  An Efficient Geometric Multigrid Solver for Viscous Liquids , 2019, PACMCGIT.

[44]  Olga Sorkine-Hornung,et al.  Instant field-aligned meshes , 2015, ACM Trans. Graph..

[45]  Keenan Crane,et al.  The heat method for distance computation , 2017, Commun. ACM.

[46]  Jose L. Gracia,et al.  Fourier Analysis for Multigrid Methods on Triangular Grids , 2009, SIAM J. Sci. Comput..

[47]  Hans-Peter Seidel,et al.  A General Framework for Mesh Decimation , 1998, Graphics Interface.

[48]  Kai Hormann,et al.  Subdividing barycentric coordinates , 2016, Comput. Aided Geom. Des..

[49]  Michael M. Kazhdan,et al.  An Adaptive Multi‐Grid Solver for Applications in Computer Graphics , 2019, Comput. Graph. Forum.

[50]  Andrei Khodakovsky,et al.  Hybrid meshes: multiresolution using regular and irregular refinement , 2002, SCG '02.

[51]  Martin Rumpf,et al.  Functional Thin Films on Surfaces , 2015, IEEE Transactions on Visualization and Computer Graphics.

[52]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[53]  Zengo Furukawa,et al.  A General Framework for , 1991 .

[54]  Marco Fratarcangeli,et al.  Vivace: a practical gauss-seidel method for stable soft body dynamics , 2016, ACM Trans. Graph..

[55]  Eftychios Sifakis,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, ACM Trans. Graph..

[56]  D. J. A. Welsh,et al.  An upper bound for the chromatic number of a graph and its application to timetabling problems , 1967, Comput. J..

[57]  Richard Szeliski,et al.  Multigrid and multilevel preconditioners for computational photography , 2011, ACM Trans. Graph..

[58]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[59]  Andrei Khodakovsky,et al.  Variational normal meshes , 2004, ACM Trans. Graph..

[60]  Szymon Rusinkiewicz,et al.  Estimating the Laplace‐Beltrami Operator by Restricting 3D Functions , 2009, Comput. Graph. Forum.

[61]  Markus H. Gross,et al.  Computational Design of Rubber Balloons , 2012, Comput. Graph. Forum.

[62]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[63]  Kwang-Jin Choi,et al.  Constrainable Multigrid for Cloth , 2013, Comput. Graph. Forum.

[64]  Alec Jacobson,et al.  Nested cages , 2015, ACM Trans. Graph..

[65]  Vladimir G. Kim,et al.  Neural subdivision , 2020, ACM Trans. Graph..

[66]  Michael Garland,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, ACM Trans. Graph..

[67]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[68]  Michael M. Kazhdan,et al.  Streaming multigrid for gradient-domain operations on large images , 2008, ACM Trans. Graph..

[69]  D. Bartuschat Algebraic Multigrid , 2007 .

[70]  Rüdiger Westermann,et al.  Workshop on Virtual Reality Interaction and Physical Simulation (2005) a Multigrid Framework for Real-time Simulation of Deformable Volumes , 2022 .

[71]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[72]  ZHONGSHI JIANG,et al.  Bijective projection in a shell , 2020, ACM Trans. Graph..