Convexity for Nonconvex Optimization Duality

Convexity for Nonconvex Optimization Duality Angelia Nedić∗, Asuman Ozdaglar†, and Alex Rubinov‡

[1]  Asuman E. Ozdaglar,et al.  Separation of Nonconvex Sets with General Augmenting Functions , 2008, Math. Oper. Res..

[2]  Asuman E. Ozdaglar,et al.  A geometric framework for nonconvex optimization duality using augmented lagrangian functions , 2008, J. Glob. Optim..

[3]  Regina Sandra Burachik,et al.  Abstract Convexity and Augmented Lagrangians , 2007, SIAM J. Optim..

[4]  A. Ozdaglar A Unified Analysis of Nonconvex Optimization Duality and Penalty Methods with General Augmenting Functions , 2006 .

[5]  A. Banerjee Convex Analysis and Optimization , 2006 .

[6]  Xiaoqi Yang,et al.  Lagrange-type Functions in Constrained Non-Convex Optimization , 2003 .

[7]  Xiaoqi Yang,et al.  A Unified Augmented Lagrangian Approach to Duality and Exact Penalization , 2003, Math. Oper. Res..

[8]  A. Ozdaglar,et al.  Min Common/Max Crossing Duality: A Simple Geometric Framework for Convex Optimization and Minimax Theory1 , 2003 .

[9]  Xiaoqi Yang,et al.  The Zero Duality Gap Property and Lower Semicontinuity of the Perturbation Function , 2002, Math. Oper. Res..

[10]  M. Teboulle,et al.  Asymptotic cones and functions in optimization and variational inequalities , 2002 .

[11]  A. Rubinov Abstract Convexity and Global Optimization , 2000 .

[12]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[13]  X. Q. Yang,et al.  Decreasing Functions with Applications to Penalization , 1999, SIAM J. Optim..

[14]  Roman A. Polyak,et al.  Modified barrier functions (theory and methods) , 1992, Math. Program..

[15]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .