Metabolic optimization by re-distribution of enzyme activities

[1]  D. Botstein,et al.  Systematic changes in gene expression patterns following adaptive evolution in yeast. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Reinhart Heinrich,et al.  Theoretical approaches to the evolutionary optimization of glycolysis--chemical analysis. , 1997, European journal of biochemistry.

[3]  R. Heinrich,et al.  Mathematical analysis of enzymic reaction systems using optimization principles. , 1991, European journal of biochemistry.

[4]  J. Thevelein,et al.  The Transcriptional Response of Saccharomyces cerevisiae to Osmotic Shock , 2000, The Journal of Biological Chemistry.

[5]  Reinhart Heinrich,et al.  Effect of cellular interaction on glycolytic oscillations in yeast: a theoretical investigation , 2000 .

[6]  R Heinrich,et al.  Competition for enzymes in metabolic pathways: implications for optimal distributions of enzyme concentrations and for the distribution of flux control. , 1999, Bio Systems.

[7]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[8]  G. Brown,et al.  Total cell protein concentration as an evolutionary constraint on the metabolic control distribution in cells. , 1991, Journal of theoretical biology.

[9]  H. McAdams,et al.  Global analysis of the genetic network controlling a bacterial cell cycle. , 2000, Science.

[10]  Varner,et al.  Application of cybernetic models to metabolic engineering: investigation of storage pathways , 1998, Biotechnology and bioengineering.

[11]  Optimal kinetic design of enzymes in a linear metabolic pathway. , 1993, Biochimica et biophysica acta.

[12]  Patrick O. Brown,et al.  Global and Specific Translational Regulation in the Genomic Response of Saccharomyces cerevisiae to a Rapid Transfer from a Fermentable to a Nonfermentable Carbon Source , 2001, Molecular and Cellular Biology.

[13]  J. Vohradský,et al.  Proteomic analysis of the bacterial cell cycle , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Wei Zhou,et al.  Characterization of the Yeast Transcriptome , 1997, Cell.

[15]  D. Ramkrishna,et al.  Metabolic Engineering from a Cybernetic Perspective. 1. Theoretical Preliminaries , 1999, Biotechnology progress.

[16]  Neal S. Holter,et al.  Fundamental patterns underlying gene expression profiles: simplicity from complexity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  P. Brown,et al.  Yeast microarrays for genome wide parallel genetic and gene expression analysis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Ronald W. Davis,et al.  A genome-wide transcriptional analysis of the mitotic cell cycle. , 1998, Molecular cell.

[19]  J. C. Nuño,et al.  Generalization of the theory of transition times in metabolic pathways: a geometrical approach. , 1999, Biophysical journal.

[20]  Michael de la Maza,et al.  Book review: Genetic Algorithms + Data Structures = Evolution Programs by Zbigniew Michalewicz (Springer-Verlag, 1992) , 1993 .

[21]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[22]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[23]  L Wodicka,et al.  Parallel analysis of genetic selections using whole genome oligonucleotide arrays. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Heinrich,et al.  The Regulation of Cellular Systems , 1996, Springer US.

[25]  R Heinrich,et al.  Kinetic and thermodynamic principles determining the structural design of ATP-producing systems , 1998, Bulletin of mathematical biology.