Melting Dynamics of Late Cretaceous Lamprophyres in Central Asia Suggest a Mechanism to Explain Many Continental Intraplate Basaltic Suite Magmatic Provinces

Intraplate small‐volume mafic magmatism is spatially and temporally widespread in central and eastern Asia, but the relevant melting dynamics have remained enigmatic. Here, we report Ar‐Ar ages, mineral and whole‐rock compositions on newly found ∼81 Ma lamprophyre dykes from central Asia, aiming to constrain the source characteristics and the melting dynamics in this intraplate setting. Mineral chemistry of the lamprophyres shows that pre‐emplacement magmas equilibrated at 970–1060°C (probably at the base of the crust) and contained 1.4–2.1 wt% water. The source region of the lamprophyres is shown to have H contents equivalent to H2O = ∼150 ppm, and to be lithologically heterogeneous with silica‐deficient pyroxenite embedded in peridotite. Because of the thermodynamic complexities involved in calculating melting scenarios with major elements for such mantle domains, we have conducted a grid search with a forward‐modeling methodology that can simulate the adiabatic decompression melting of a lithologically heterogeneous mantle using incompatible trace elements. The modeling results indicate that original melting occurred at a potential temperature of ∼1400°C under a thinned lithosphere (∼70 km, corresponding to a final melting pressure of 2.3 GPa). Combining these conditions with constraints from regional geology and the tectonic history, the lamprophyres are inferred to have formed by decompression melting induced by small‐scale asthenospheric upwellings due to the edge effects under a corrugated lithospheric lower boundary. We suggest that this scenario has global relevance and represents a likely mechanism for the initiation of relatively small‐scale intraplate magmatism within continents.

[1]  W. Griffin,et al.  Deep lithosphere of the North China Craton archives the fate of the Paleo-Asian Ocean , 2021 .

[2]  Hong‐fu Zhang,et al.  Comprehensive refertilization of the Archean–Paleoproterozoic lithospheric mantle beneath the northwestern North China Craton: Evidence from in situ Sr isotopes of the Siziwangqi peridotites , 2020 .

[3]  M. Heizler,et al.  Peridotite versus pyroxenite input in Mongolian Mesozoic-Cenozoic lavas, and dykes , 2020 .

[4]  W. Griffin,et al.  Pyroxenite Xenoliths Record Complex Melt Impregnation in the Deep Lithosphere of the Northwestern North China Craton , 2020 .

[5]  D. Ionov,et al.  Decoupled water and iron enrichments in the cratonic mantle: A study on peridotite xenoliths from Tok, SE Siberian Craton , 2020 .

[6]  S. Jowitt,et al.  Arc‐Type Magmatism Due to Continental‐Edge Plowing Through Ancient Subduction‐Enriched Mantle , 2020, Geophysical Research Letters.

[7]  Do Hee Keum,et al.  Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation , 2020, Science Advances.

[8]  T. Barry,et al.  Simultaneous and extensive removal of the East Asian lithospheric root , 2020, Scientific Reports.

[9]  Y. Niu,et al.  Lithosphere thickness controls continental basalt compositions: An illustration using Cenozoic basalts from eastern China , 2020 .

[10]  W. Griffin,et al.  Langshan basalts record recycled Paleo-Asian oceanic materials beneath the northwest North China Craton , 2019, Chemical Geology.

[11]  C. Oppenheimer,et al.  Quantifying Asthenospheric and Lithospheric Controls on Mafic Magmatism Across North Africa , 2019, Geochemistry, Geophysics, Geosystems.

[12]  S. Foley,et al.  Thermal-chemical conditions of the North China Mesozoic lithospheric mantle and implication for the lithospheric thinning of cratons , 2019, Earth and Planetary Science Letters.

[13]  R. Walker,et al.  Destruction of the North China Craton in the Mesozoic , 2019, Annual Review of Earth and Planetary Sciences.

[14]  Fengli Shao,et al.  The origin and geodynamic significance of the Mesozoic dykes in eastern continental China , 2019, Lithos.

[15]  Q. Xia,et al.  Buoyant hydrous mantle plume from the mantle transition zone , 2019, Scientific Reports.

[16]  Xuan‐Ce Wang,et al.  The Role of Earth's Deep Volatile Cycling in the Generation of Intracontinental High‐Mg Andesites: Implication for Lithospheric Thinning Beneath the North China Craton , 2019, Journal of Geophysical Research: Solid Earth.

[17]  L. Miao,et al.  Major, trace element, and SrNd isotopic geochemistry of Cenozoic basalts in Central‐North and East Mongolia: Petrogenesis and tectonic implication , 2018, Geological Journal.

[18]  F. Meng,et al.  Late Cenozoic intra-plate basalts of the Greater Khingan Range in NE China and Khangai Province in Central Mongolia , 2018, Gondwana Research.

[19]  W. Xiao,et al.  Reconstructions of East Asian blocks in Pangea: Preface , 2018, Earth-Science Reviews.

[20]  Xiang Zhou,et al.  Fertile lithospheric mantle underlying ancient continental crust beneath the northwestern North China craton: Significant effect from the southward subduction of the Paleo–Asian Ocean , 2018, GSA Bulletin.

[21]  E. Bonatti,et al.  Thermal effects of pyroxenites on mantle melting below mid-ocean ridges , 2018, Nature Geoscience.

[22]  Q. Ma,et al.  Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia , 2018, Science China Earth Sciences.

[23]  L. Mei,et al.  Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS VI Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus , 2018, Journal of Earth Science.

[24]  Qi-hua Zhao,et al.  Late Cretaceous‐Cenozoic Multi‐Stage Denudation at the Western Ordos Block: Constraints by the Apatite Fission Track Dating on the Langshan , 2018 .

[25]  Jianping Zheng,et al.  Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin-mountain respond in the North China Craton , 2018, Science China Earth Sciences.

[26]  E. Chin,et al.  On the development of the calc-alkaline and tholeiitic magma series: A deep crustal cumulate perspective , 2018 .

[27]  J. White,et al.  Unravelling the magmatic system beneath a monogenetic volcanic complex (Jagged Rocks Complex, Hopi Buttes, AZ, USA) , 2017, Contributions to Mineralogy and Petrology.

[28]  Wei-dong Sun,et al.  Major transition of continental basalts in the Early Cretaceous: Implications for the destruction of the North China Craton , 2017 .

[29]  S. Foley,et al.  Carbonated sediment recycling and its contribution to lithospheric refertilization under the northern North China Craton , 2017 .

[30]  M. Ducea,et al.  In-situ trace element and Sr isotopic compositions of mantle xenoliths constrain two-stage metasomatism beneath the northern North China Craton , 2017 .

[31]  San-zhong Li,et al.  Age of the subducting Pacific slab beneath East Asia and its geodynamic implications , 2017 .

[32]  D. Neave,et al.  A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones , 2017 .

[33]  Xiaohong Wang,et al.  Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen , 2017 .

[34]  Zhong‐Yuan Ren,et al.  Petrogenesis of Early Cretaceous basaltic lavas from the North China Craton: Implications for cratonic destruction , 2017 .

[35]  S. Grand,et al.  Seismic velocity variations beneath central Mongolia: Evidence for upper mantle plumes? , 2017 .

[36]  Yigang Xu,et al.  Evolution of the mantle beneath the eastern North China Craton during the Cenozoic: Linking geochemical and geophysical observations , 2017 .

[37]  D. Palladino,et al.  An improved clinopyroxene-based hygrometer for Etnean magmas and implications for eruption triggering mechanisms , 2016 .

[38]  P. Condamine,et al.  Experimental melting of phlogopite-peridotite in the garnet stability field , 2016, Contributions to Mineralogy and Petrology.

[39]  C. Lesher,et al.  REEBOX PRO: A forward model simulating melting of thermally and lithologically variable upwelling mantle , 2016 .

[40]  I. Smith,et al.  Interpreting chemical compositions of small scale basaltic systems: A review , 2016 .

[41]  B. Tattitch,et al.  An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer , 2016, Contributions to Mineralogy and Petrology.

[42]  R. Romer,et al.  Mantle Metasomatism at the Edge of a Retreating Subduction Zone: Late Neogene Lamprophyres from the Island of Kos, Greece , 2016 .

[43]  A. Hofmann,et al.  Rapid lithospheric thinning of the North China Craton: New evidence from cretaceous mafic dikes in the Jiaodong Peninsula , 2016 .

[44]  Yinghuai Lu,et al.  Late Permian high-Mg andesite and basalt association from northern Liaoning, North China: Insights into the final closure of the Paleo-Asian ocean and the orogen–craton boundary , 2016 .

[45]  E. Stolper,et al.  The role of pyroxenite in basalt genesis: Melt‐PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa , 2016 .

[46]  W. Griffin,et al.  Coexisting Early Cretaceous High-Mg Andesites and Adakitic Rocks in the North China Craton: the Role of Water in Intraplate Magmatism and Cratonic Destruction , 2016 .

[47]  A. S. Mekhonoshin,et al.  Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic , 2016 .

[48]  K. Putirka Special Collection: Rates and Depths of Magma Ascent on Earth: Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes , 2016 .

[49]  J. Komorowski,et al.  Constraints from Phase Equilibrium Experiments on Pre-eruptive Storage Conditions in Mixed Magma Systems: a Case Study on Crystal-rich Basaltic Andesites from Mount Merapi, Indonesia , 2016 .

[50]  W. Spakman,et al.  Latest Jurassic–earliest Cretaceous closure of the Mongol-Okhotsk Ocean: A paleomagnetic and seismological-tomographic analysis , 2015 .

[51]  A. Kozlovsky,et al.  Late Mesozoic–Cenozoic intraplate magmatism in Central Asia and its relation with mantle diapirism: Evidence from the South Khangai volcanic region, Mongolia , 2015 .

[52]  R. Carlson,et al.  The age and history of the lithospheric mantle of the Siberian craton: Re-Os and PGE study of peridotite xenoliths from the Obnazhennaya kimberlite , 2015 .

[53]  Ulrich Rüde,et al.  Fast asthenosphere motion in high‐resolution global mantle flow models , 2015 .

[54]  G. Fershtater,et al.  Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning , 2015 .

[55]  P. Asimow,et al.  PRIMELT3 MEGA.XLSM software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus , 2015 .

[56]  N. Rawlinson,et al.  On the origin of recent intraplate volcanism in Australia , 2014 .

[57]  Y. Niu Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives , 2014 .

[58]  M. Ghiorso,et al.  Thermodynamic Model for Energy-Constrained Open-System Evolution of Crustal Magma Bodies Undergoing Simultaneous Recharge, Assimilation and Crystallization: the Magma Chamber Simulator , 2014 .

[59]  L. Ye,et al.  Lithosphere thinning beneath west North China Craton: Evidence from geochemical and Sr-Nd-Hf isotope compositions of Jining basalts , 2014 .

[60]  D. Ionov,et al.  High water contents in the Siberian cratonic mantle linked to metasomatism: An FTIR study of Udachnaya peridotite xenoliths , 2014 .

[61]  J. Hunen,et al.  Sublithospheric small-scale convection—A mechanism for collision zone magmatism , 2014 .

[62]  Jin-Hui Yang,et al.  Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton , 2014 .

[63]  Wenliang Xu,et al.  Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes , 2013 .

[64]  M. Coombs,et al.  Pre-eruptive Magmatic Conditions at Augustine Volcano, Alaska, 2006: Evidence from Amphibole Geochemistry and Textures , 2013 .

[65]  P. Scarlato,et al.  A new test for equilibrium based on clinopyroxene-melt pairs: Clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions , 2013 .

[66]  T. Wright,et al.  Mantle upwelling and initiation of rift segmentation beneath the Afar Depression , 2013 .

[67]  J. Murphy Appinite suites: A record of the role of water in the genesis, transport, emplacement and crystallization of magma , 2013 .

[68]  P. Armienti,et al.  A New Model to Estimate Deep-level Magma Ascent Rates, with Applications to Mt. Etna (Sicily, Italy) , 2013 .

[69]  Z. França,et al.  Magmatic Processes and the Role of Antecrysts in the Genesis of Corvo Island (Azores Archipelago, Portugal) , 2013 .

[70]  Charles H. Langmuir,et al.  The mean composition of ocean ridge basalts , 2013 .

[71]  T. Plank,et al.  Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes , 2013 .

[72]  M. Hirschmann,et al.  Carbon-dioxide-rich silicate melt in the Earth’s upper mantle , 2013, Nature.

[73]  R. Carlson,et al.  Comparative Sr–Nd–Hf–Os–Pb isotope systematics of xenolithic peridotites from Yangyuan, North China Craton: Additional evidence for a Paleoproterozoic age , 2012 .

[74]  W. Griffin,et al.  Triassic “adakitic” rocks in an extensional setting (North China): Melts from the cratonic lower crust , 2012 .

[75]  T. Barry,et al.  Cenozoic Volcanism on the Hangai Dome, Central Mongolia: Geochemical Evidence for Changing Melt Sources and Implications for Mechanisms of Melting , 2012 .

[76]  F. Holtz,et al.  Experimental calibration of the effect of H2O on plagioclase crystallization in basaltic melt at 200 MPa , 2012 .

[77]  Alberto Renzulli,et al.  Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa , 2012, Contributions to Mineralogy and Petrology.

[78]  Y. Missenard,et al.  Can Moroccan Atlas lithospheric thinning and volcanism be induced by Edge‐Driven Convection? , 2012 .

[79]  J. Maclennan,et al.  Compositional trends of Icelandic basalts: Implications for short–length scale lithological heterogeneity in mantle plumes , 2011 .

[80]  M. Wilson,et al.  The Origin of Intra-plate Ocean Island Basalts (OIB): the Lid Effect and its Geodynamic Implications , 2011 .

[81]  M. Ghiorso,et al.  Rhyolite-MELTS: a Modified Calibration of MELTS Optimized for Silica-rich, Fluid-bearing Magmatic Systems , 2010 .

[82]  B. Windley,et al.  Delamination/thinning of sub-continental lithospheric mantle under Eastern China: The role of water and multiple subduction , 2010, American Journal of Science.

[83]  C. Mandeville,et al.  The Role of Water in Generating the Calc-alkaline Trend: New Volatile Data for Aleutian Magmas and a New Tholeiitic Index , 2010 .

[84]  Yigang Xu,et al.  Thermal state and structure of the lithosphere beneath eastern China: A synthesis on basalt-borne xenoliths , 2010 .

[85]  D. Green,et al.  Water and its influence on the lithosphere–asthenosphere boundary , 2010, Nature.

[86]  Alberto Renzulli,et al.  Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes , 2010 .

[87]  R. Hilst,et al.  Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography , 2010 .

[88]  A. Hofmann,et al.  Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China , 2010 .

[89]  R. Aster,et al.  Small-scale convection at the edge of the Colorado Plateau: Implications for topography, magmatism, and evolution of Proterozoic lithosphere , 2009 .

[90]  Hongyi Li,et al.  The lithosphere of North China Craton from surface wave tomography , 2009 .

[91]  T. Sisson,et al.  Basanite–nephelinite suite from early Kilauea: carbonated melts of phlogopite–garnet peridotite at Hawaii’s leading magmatic edge , 2009 .

[92]  W. McDonough,et al.  Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts , 2009 .

[93]  Yigang Xu,et al.  On the timing and duration of the destruction of the North China Craton , 2009 .

[94]  T. Plank,et al.  Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas , 2009 .

[95]  Huan-Ning Qiu,et al.  Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China , 2009 .

[96]  Shan Gao,et al.  In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard , 2008 .

[97]  R. Walker,et al.  Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton , 2008 .

[98]  E. Stolper,et al.  Metasomatized Lithosphere and the Origin of Alkaline Lavas , 2008, Science.

[99]  P. Kelemen,et al.  Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton , 2008 .

[100]  S. Goldstein,et al.  Evolution of subcontinental lithospheric mantle beneath eastern China: Re–Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts , 2008 .

[101]  A. Andronikov,et al.  Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China , 2008 .

[102]  P. Kelemen,et al.  Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates , 2008 .

[103]  R. Miller,et al.  Zircon growth and recycling during the assembly of large, composite arc plutons , 2007 .

[104]  Weidong Sun,et al.  The golden transformation of the Cretaceous plate subduction in the West Pacific , 2007 .

[105]  C. Macpherson,et al.  Amphibole “sponge” in arc crust? , 2007 .

[106]  Paul D. Asimow,et al.  Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites , 2007 .

[107]  C. Herzberg Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano , 2006, Nature.

[108]  Hong‐fu Zhang,et al.  Asthenosphere–lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton , 2006 .

[109]  Yue-heng Yang,et al.  The chemical-temporal evolution of lithospheric mantle underlying the North China Craton , 2006 .

[110]  Dapeng Zhao,et al.  High‐resolution mantle tomography of China and surrounding regions , 2006 .

[111]  B. Kjarsgaard,et al.  Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: a Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton , 2006 .

[112]  J. Gardner,et al.  The influence of magma ascent path on the texture, mineralogy, and formation of hornblende reaction rims , 2006 .

[113]  J. Adam,et al.  Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour , 2006 .

[114]  Hans-Peter Bunge,et al.  Are splash plumes the origin of minor hotspots , 2006 .

[115]  M. Hirschmann,et al.  Immiscible Transition from Carbonate-rich to Silicate-rich Melts in the 3 GPa Melting Interval of Eclogite + CO2 and Genesis of Silica-undersaturated Ocean Island Lavas , 2006 .

[116]  B. Kjarsgaard,et al.  Integrating Ultramafic Lamprophyres into the IUGS Classification of Igneous Rocks: Rationale and Implications , 2005 .

[117]  G. Nowell,et al.  Volcanism in the Vitim Volcanic Field, Siberia: Geochemical Evidence for a Mantle Plume Beneath the Baikal Rift Zone , 2005 .

[118]  E. Jagoutz,et al.  The provenance of fertile off-craton lithospheric mantle: Sr-Nd isotope and chemical composition of garnet and spinel peridotite xenoliths from Vitim, Siberia , 2005 .

[119]  R. Rudnick,et al.  Recycling lower continental crust in the North China craton , 2004, Nature.

[120]  B. Kjarsgaard,et al.  Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province , 2004 .

[121]  Qiang Wang,et al.  Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: constraints from SHRIMP zircon U–Pb chronology and geochemistry of Mesozoic plutons from western Shandong , 2004 .

[122]  W. Fan,et al.  Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites , 2003 .

[123]  F. Ryerson,et al.  New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho , 2003 .

[124]  Richard F. Katz,et al.  A new parameterization of hydrous mantle melting , 2003 .

[125]  Stephen S. Gao,et al.  Evidence for small‐scale mantle convection in the upper mantle beneath the Baikal rift zone , 2003 .

[126]  V. Salters,et al.  Recycling oceanic crust: Quantitative constraints , 2003 .

[127]  C. H. Langmuir,et al.  The importance of water to oceanic mantle melting regimes , 2003, Nature.

[128]  K. Priestley,et al.  Seismic evidence for a moderately thick lithosphere beneath the Siberian Platform , 2003 .

[129]  P. Hoppe,et al.  Garnet-field melting and late-stage refertilization in "Residual" abyssal peridotites from the Central Indian Ridge , 2002 .

[130]  W. Fan,et al.  Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr–Nd–Pb isotope studies of Fangcheng basalts , 2002 .

[131]  D. Ionov Mantle structure and rifting processes in the Baikal–Mongolia region: geophysical data and evidence from xenoliths in volcanic rocks , 2002 .

[132]  Anthony A. P. Koppers,et al.  ArArCALC-software for 40 Ar/ 39 Ar age calculations , 2002 .

[133]  Zhang Junxia,et al.  Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas , 2002 .

[134]  W. Griffin,et al.  Thermal and petrological structure of the lithosphere beneath Hannuoba , 2001 .

[135]  W. Griffin,et al.  The density structure of subcontinental lithosphere through time , 2001 .

[136]  H. Zou,et al.  Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance , 2000 .

[137]  J. Ritsema,et al.  African hot spot volcanism: small-scale convection in the upper mantle beneath cratons. , 2000, Science.

[138]  K. Hirose Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali‐basalt magma generation , 1997 .

[139]  R. Kinzler Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid‐ocean ridge basalt petrogenesis , 1997 .

[140]  W. McDonough,et al.  The composition of the Earth , 1995 .

[141]  O. Eldholm,et al.  Large igneous provinces: crustal structure, dimensions, and external consequences , 1994 .

[142]  T. Sisson,et al.  Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism , 1993 .

[143]  M. Schmidt Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer , 1992 .

[144]  T. Holland,et al.  Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer , 1990 .

[145]  Y. Zorin,et al.  Thickness of the lithosphere beneath the Baikal rift zone and adjacent regions , 1989 .

[146]  L. Hollister,et al.  Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons , 1987 .

[147]  N. Rock The Nature and Origin of Ultramafic Lamprophyres: Alnöites and Allied Rocks , 1986 .

[148]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[149]  S. Wass The origin and petrogenetic significance of hour-glass zoning in titaniferous clinopyroxenes , 1973, Mineralogical magazine.

[150]  B. Leake,et al.  Report. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names , 1971, Mineralogical Magazine.

[151]  W. O'reilly,et al.  Oxidation of Titanomagnetites and Self-Reversal , 1966, Nature.

[152]  T. Barry,et al.  Constraining lithospheric removal and asthenospheric input to melts in Central Asia: A geochemical study of Triassic to Cretaceous magmatic rocks in the Gobi Altai (Mongolia) , 2018 .

[153]  Lijuan He Thermal regime of the North China Craton: Implications for craton destruction , 2015 .

[154]  A. Hofmann,et al.  Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton? , 2014 .

[155]  T. Plank 4.17 – The Chemical Composition of Subducting Sediments , 2014 .

[156]  Q. Xia,et al.  High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere , 2013 .

[157]  Shan Gao,et al.  Continental and Oceanic Crust Recycling-induced Melt^Peridotite Interactions in the Trans-North China Orogen: U^Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths , 2010 .

[158]  Keith Putirka,et al.  Thermometers and Barometers for Volcanic Systems , 2008 .

[159]  L. Hor,et al.  Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons , 2007 .

[160]  Zhang Hong Emplacement age and Sr-Nd-Hf isotopic characteristics of the diamondiferous kimberlites from the eastern North China Craton , 2007 .

[161]  N. Kusznir,et al.  Continental lithospheric thinning and breakup in response to upwelling divergent mantle flow: application to the Woodlark, Newfoundland and Iberia margins , 2007 .

[162]  P. Kelemen,et al.  One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust , 2005 .

[163]  H. Schmincke Fire and Water , 2004 .

[164]  A. D. Saunders,et al.  Petrogenesis of Cenozoic Basalts from Mongolia: Evidence for the Role of Asthenospheric versus Metasomatized Lithospheric Mantle Sources , 2003 .

[165]  R. Rudnick,et al.  3.01 – Composition of the Continental Crust , 2003 .

[166]  R. W. Le Maitre,et al.  Igneous Rocks: A Classification and Glossary of Terms , 2002 .

[167]  R. Maitre,et al.  Igneous Rocks: Frontmatter , 2002 .

[168]  M. Menzies,et al.  Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China , 1993, Geological Society, London, Special Publications.

[169]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[170]  N. Rock The nature and origin of lamprophyres: an overview , 1987, Geological Society, London, Special Publications.