Mathematical modeling of the lambda switch: a fuzzy logic approach.

Gene regulation plays a central role in the development and functioning of living organisms. Gaining a deeper qualitative and quantitative understanding of gene regulation is an important scientific challenge. The Lambda switch is commonly used as a paradigm of gene regulation. Verbal descriptions of the structure and functioning of the switch have appeared in biological textbooks. We apply fuzzy modeling to transform one such verbal description into a well-defined mathematical model. The resulting model is a piecewise-quadratic second-order differential equation. It demonstrates functional fidelity with known results while being simple enough to allow a rather detailed analysis. Properties such as the number, location, and domain of attraction of equilibrium points can be studied analytically. Furthermore, the model provides a rigorous explanation for the so-called stability puzzle of the Lambda switch.

[1]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[2]  H. D. Jong,et al.  Qualitative simulation of genetic regulatory networks using piecewise-linear models , 2004, Bulletin of mathematical biology.

[3]  Miha Mraz,et al.  Simulating flocks on the wing: the fuzzy approach. , 2005, Journal of Theoretical Biology.

[4]  M. Ptashne A Genetic Switch , 1986 .

[5]  D. Lamb,et al.  Sensitivity enhancement in fluorescence correlation spectroscopy of multiple species using time-gated detection. , 2000, Biophysical journal.

[6]  Michael Margaliot,et al.  Knowledge-Based Neurocomputing: A Fuzzy Logic Approach , 2009, Studies in Fuzziness and Soft Computing.

[7]  H. McAdams,et al.  Circuit simulation of genetic networks. , 1995, Science.

[8]  Michael Margaliot,et al.  Mathematical Modeling of Natural Phenomena: A Fuzzy Logic Approach , 2007 .

[9]  L. Hood,et al.  Efficiency, Robustness, and Stochasticity of Gene Regulatory Networks in Systems Biology: λ Switch as a Working Example , 2005, q-bio/0512007.

[10]  Michio Sugeno,et al.  Introduction: The Real Contribution of Fuzzy Systems , 1998 .

[11]  Michael Margaliot,et al.  How does the Dendrocoleum lacteum orient to light? A fuzzy modeling approach , 2005, Fuzzy Sets Syst..

[12]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[13]  K. Sneppen,et al.  Sensitivity of OR in Phage λ , 2004 .

[14]  L. Hood,et al.  Stochasticity of Gene Regulatory Networks in Systems Biology: l Switch as a Working Example , 2007 .

[15]  E. Hill Journal of Theoretical Biology , 1961, Nature.

[16]  G. K. Ackers,et al.  Quantitative model for gene regulation by lambda phage repressor. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[17]  N. Costantino,et al.  On the role of Cro in λ prophage induction , 2005 .

[18]  Hung T. Nguyen,et al.  Fuzzy Systems: Modeling and Control , 1998 .

[19]  J. Buckley,et al.  Fuzzy expert systems and fuzzy reasoning , 2004 .

[20]  J Reinitz,et al.  Theoretical and experimental analysis of the phage lambda genetic switch implies missing levels of co-operativity. , 1990, Journal of theoretical biology.

[21]  S. P. Sineoky,et al.  RecA-independent pathways of lambdoid prophage induction in Escherichia coli. , 1998, Journal of bacteriology.

[22]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[23]  J. W. Little,et al.  Robustness of a gene regulatory circuit , 1999, The EMBO journal.

[24]  M. Margaliot,et al.  Biomimicry and Fuzzy Modeling: A Match Made in Heaven , 2008, IEEE Computational Intelligence Magazine.

[25]  Michael Margaliot,et al.  The Fuzzy Ant , 2006, IEEE Computational Intelligence Magazine.

[26]  Juan J. Nieto,et al.  Fuzzy Logic in Medicine and Bioinformatics , 2006, Journal of biomedicine & biotechnology.

[27]  M. Ptashne A genetic switch : phage λ and higher organisms , 1992 .

[28]  Jonathan M. Garibaldi,et al.  Fuzzy Expert Systems , 2018, Fuzzy Logic Theory and Applications.

[29]  Vilém Novák,et al.  Are fuzzy sets a reasonable tool for modeling vague phenomena? , 2005, Fuzzy Sets Syst..

[30]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[31]  Michael Margaliot,et al.  New Approaches to Fuzzy Modeling and Control - Design and Analysis , 2000, Series in Machine Perception and Artificial Intelligence.

[32]  Michael Margaliot,et al.  Fuzzy Lyapunov-based approach to the design of fuzzy controllers , 1999, Fuzzy Sets Syst..

[33]  Martin Steffen,et al.  Author ' s personal copy ARTICLE IN PRESS , 2009 .

[34]  Mark Ptashne,et al.  A Genetic Switch: Gene Control and Phage Lambda , 1986 .

[35]  Sangdun Choi,et al.  Introduction To Systems Biology , 2010 .

[36]  K. Sneppen,et al.  Sensitivity of O R in Phage l , 2004 .

[37]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[38]  K. Sneppen,et al.  Epigenetics as a first exit problem. , 2001, Physical review letters.

[39]  Diane K. Hawley,et al.  Mechanism of activation of transcription initiation from the λPRM promoter , 1982 .

[40]  Michael Margaliot,et al.  Mathematical modeling of observed natural behavior: a fuzzy logic approach , 2004, Fuzzy Sets Syst..

[41]  Michael Margaliot,et al.  Nicholson's blowflies revisited: a fuzzy modeling approach , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[42]  Michael C. Mackey,et al.  Why the Lysogenic State of Phage λ Is So Stable: A Mathematical Modeling Approach , 2004 .

[43]  M. A. Shea,et al.  The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation. , 1985, Journal of molecular biology.

[44]  Uzay Kaymak,et al.  Fuzzy Decision Making in Modeling and Control , 2002, World Scientific Series in Robotics and Intelligent Systems.

[45]  Lotfi A. Zadeh,et al.  Fuzzy logic, neural networks, and soft computing , 1993, CACM.