Variational Filtering with Copula Models for SLAM

The ability to infer map variables and estimate pose is crucial to the operation of autonomous mobile robots. In most cases the shared dependency between these variables is modeled through a multivariate Gaussian distribution, but there are many situations where that assumption is unrealistic. Our paper shows how it is possible to relax this assumption and perform simultaneous localization and mapping (SLAM) with a larger class of distributions, whose multivariate dependency is represented with a copula model. We integrate the distribution model with copulas into a Sequential Monte Carlo estimator and show how unknown model parameters can be learned through gradient-based optimization. We demonstrate our approach is effective in settings where Gaussian assumptions are clearly violated, such as environments with uncertain data association and nonlinear transition models.

[1]  Richard E. Turner,et al.  Neural Adaptive Sequential Monte Carlo , 2015, NIPS.

[2]  K. N. Toosi,et al.  Monte Carlo Sampling of Non-Gaussian Proposal Distribution in Feature-Based RBPF-SLAM , 2012 .

[3]  Peter Jan van Leeuwen,et al.  Sequential Monte Carlo with kernel embedded mappings: The mapping particle filter , 2019, J. Comput. Phys..

[4]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[5]  Dorota Kurowicka,et al.  Generating random correlation matrices based on vines and extended onion method , 2009, J. Multivar. Anal..

[6]  Ronald Parr,et al.  DP-SLAM 2.0 , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[7]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[8]  Hong Zhang,et al.  A UPF-UKF Framework For SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[9]  Hanumant Singh,et al.  Exactly Sparse Delayed-State Filters , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[10]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[11]  Gal Elidan,et al.  Nonparanormal Belief Propagation (NPNBP) , 2012, NIPS.

[12]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[13]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping using the Bayes tree , 2012, Int. J. Robotics Res..

[14]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[15]  Dehann Fourie,et al.  Multimodal Semantic SLAM with Probabilistic Data Association , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[16]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[17]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[18]  David B. Dunson,et al.  Variational Gaussian Copula Inference , 2015, AISTATS.

[19]  David M. Blei,et al.  The Generalized Reparameterization Gradient , 2016, NIPS.

[20]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[21]  John J. Leonard,et al.  A nonparametric belief solution to the Bayes tree , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[22]  R. Nelsen An Introduction to Copulas , 1998 .

[23]  Sebastian Thrun,et al.  The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures , 2006, Int. J. Robotics Res..

[24]  Youssef M. Marzouk,et al.  Bayesian inference with optimal maps , 2011, J. Comput. Phys..

[25]  Hugh F. Durrant-Whyte,et al.  A Bayesian Algorithm for Simultaneous Localisation and Map Building , 2001, ISRR.

[26]  Edoardo M. Airoldi,et al.  Copula variational inference , 2015, NIPS.

[27]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[28]  Dehann Fourie,et al.  Multi-modal and inertial sensor solutions for navigation-type factor graphs , 2017 .

[29]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[30]  Scott W. Linderman,et al.  Variational Sequential Monte Carlo , 2017, AISTATS.

[31]  John J. Leonard,et al.  Robust incremental online inference over sparse factor graphs: Beyond the Gaussian case , 2013, 2013 IEEE International Conference on Robotics and Automation.

[32]  Freda Kemp,et al.  An Introduction to Sequential Monte Carlo Methods , 2003 .

[33]  Frank Dellaert,et al.  The Bayes Tree: An Algorithmic Foundation for Probabilistic Robot Mapping , 2010, WAFR.

[34]  Edwin Olson,et al.  Inference on networks of mixtures for robust robot mapping , 2013, Int. J. Robotics Res..

[35]  Andreas Birk,et al.  On behalf of: Multimedia Archives , 2012 .

[36]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[37]  Carl E. Rasmussen,et al.  Variational Gaussian Process State-Space Models , 2014, NIPS.

[38]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[39]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[40]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[41]  Brendan Englot,et al.  Extending Model-based Policy Gradients for Robots in Heteroscedastic Environments , 2017, CoRL.