Finite Newton method for Lagrangian support vector machine classification
暂无分享,去创建一个
[1] Francisco Facchinei,et al. Minimization of SC1 functions and the Maratos effect , 1995, Oper. Res. Lett..
[2] Alexander J. Smola,et al. Learning with kernels , 1998 .
[3] Thorsten Joachims,et al. Making large-scale support vector machine learning practical , 1999 .
[4] Yuh-Jye Lee,et al. RSVM: Reduced Support Vector Machines , 2001, SDM.
[5] J. Hiriart-Urruty,et al. Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .
[6] Alexander J. Smola,et al. Advances in Large Margin Classifiers , 2000 .
[7] O. Mangasarian. Parallel Gradient Distribution in Unconstrained Optimization , 1995 .
[8] Olvi L. Mangasarian,et al. Generalized Support Vector Machines , 1998 .
[9] L. Armijo. Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .
[10] S. Venit,et al. Numerical Analysis: A Second Course. , 1974 .
[11] Susan Eitelman,et al. Matlab Version 6.5 Release 13. The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA 01760-2098; 508/647-7000, Fax 508/647-7001, www.mathworks.com , 2003 .
[12] Glenn Fung,et al. Proximal support vector machine classifiers , 2001, KDD '01.
[13] Olvi L. Mangasarian,et al. A Finite Newton Method for Classi cation Problems , 2001 .
[14] David R. Musicant,et al. Successive overrelaxation for support vector machines , 1999, IEEE Trans. Neural Networks.
[15] David R. Musicant,et al. Lagrangian Support Vector Machines , 2001, J. Mach. Learn. Res..
[16] Olvi L. Mangasarian,et al. A finite newton method for classification , 2002, Optim. Methods Softw..
[17] J. Miller. Numerical Analysis , 1966, Nature.
[18] Catherine Blake,et al. UCI Repository of machine learning databases , 1998 .
[19] Bernhard Schölkopf,et al. Learning with kernels , 2001 .
[20] J. Ortega. Numerical Analysis: A Second Course , 1974 .
[21] R. Rockafellar. Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .
[22] Dustin Boswell,et al. Introduction to Support Vector Machines , 2002 .
[23] Gene H. Golub,et al. Matrix computations , 1983 .
[24] Olvi L. Mangasarian,et al. Nonlinear Programming , 1969 .
[25] Robert A. Lordo,et al. Learning from Data: Concepts, Theory, and Methods , 2001, Technometrics.
[26] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[27] Glenn Fung,et al. Incremental Support Vector Machine Classification , 2002, SDM.
[28] Olvi L. Mangasarian,et al. Nonlinear complementarity as unconstrained and constrained minimization , 1993, Math. Program..
[29] David Page. Comparative Data Mining for Microarrays : A Case Study Based on Multiple Myeloma , 2002 .
[30] S. Odewahn,et al. Automated star/galaxy discrimination with neural networks , 1992 .
[31] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[32] Yuh-Jye Lee,et al. SSVM: A Smooth Support Vector Machine for Classification , 2001, Comput. Optim. Appl..
[33] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .