An Effective Solution to Convex 1-Body N-Representability

From a geometric point of view, Pauli’s exclusion principle defines a hypersimplex. This convex polytope describes the compatibility of 1-fermion and N-fermion density matrices, therefore it coincides with the convex hull of the pure N-representable 1-fermion density matrices. Consequently, the description of ground state physics through 1-fermion density matrices may not necessitate the intricate pure state generalized Pauli constraints. In this article, we study the generalization of the 1-body N-representability problem to ensemble states with fixed spectrum w, in order to describe finite-temperature states and distinctive mixtures of excited states. By employing ideas from convex analysis and combinatorics, we present a comprehensive solution to the corresponding convex relaxation, thus circumventing the complexity of generalized Pauli constraints. In particular, we adapt and further develop tools such as symmetric polytopes, sweep polytopes, and Gale order. For both fermions and bosons, generalized exclusion principles are discovered, which we determine for any number of particles and dimension of the 1-particle Hilbert space. These exclusion principles are expressed as linear inequalities satisfying hierarchies determined by the non-zero entries of w. The two families of polytopes resulting from these inequalities are part of the new class of so-called lineup polytopes.

[1]  David Avis,et al.  A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra , 1991, SCG '91.

[2]  M. Ruskai,et al.  Comment on some results of Erdahl and the convex structure of reduced density matrices , 2012, 1205.3682.

[3]  The convex structure of electrons , 1977 .

[4]  David A Mazziotti,et al.  Anti-hermitian contracted schrödinger equation: direct determination of the two-electron reduced density matrices of many-electron molecules. , 2006, Physical review letters.

[5]  D. Mazziotti Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules , 2007 .

[6]  伏見 康治,et al.  Some formal properties of the density matrix , 1940 .

[7]  A. J. Coleman Kummer variety, geometry of N-representability, and phase transitions , 2002 .

[8]  D. Gross,et al.  Generalized Pauli constraints in small atoms , 2017, 1710.03074.

[9]  Elliott H. Lieb Density functionals for coulomb systems , 1983 .

[10]  C. A. Coulson,et al.  Present State of Molecular Structure Calculations , 1960 .

[11]  Christian Schilling,et al.  Foundation of One-Particle Reduced Density Matrix Functional Theory for Excited States. , 2021, Journal of chemical theory and computation.

[12]  Melissa Sherman-Bennett,et al.  The m=2 amplituhedron and the hypersimplex: signs, clusters, triangulations, Eulerian numbers , 2021 .

[13]  Lavery,et al.  Mathematical Challenges from Theoretical/Computational Chemistry. , 1995 .

[14]  G. Nemhauser,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2014 .

[15]  Roberto Bagnara,et al.  The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems , 2006, Sci. Comput. Program..

[16]  M. Levy Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[17]  P. Hayden,et al.  Quantum state transformations and the Schubert calculus , 2004, quant-ph/0410052.

[18]  Leonardo Martínez-Sandoval,et al.  The convex dimension of hypergraphs and the hypersimplicial Van Kampen-Flores Theorem , 2019, ArXiv.

[19]  Matthias Christandl,et al.  Pinning of fermionic occupation numbers. , 2012, Physical review letters.

[20]  Michael Atiyah,et al.  Convexity and Commuting Hamiltonians , 1982 .

[21]  Michel Brion On the general faces of the moment polytope , 1999 .

[22]  Nicolas Ressayre,et al.  Geometric invariant theory and the generalized eigenvalue problem , 2007, 0704.2127.

[23]  Rauch,et al.  A pr 2 01 9 Orthogonalization of fermion k-Body operators and , 2019 .

[24]  R. Ayres VARIATIONAL APPROACH TO THE MANY-BODY PROBLEM , 1958 .

[25]  S. Valone,et al.  Consequences of extending 1‐matrix energy functionals from pure–state representable to all ensemble representable 1 matrices , 1980 .

[26]  D. Mazziotti Pure- N -representability conditions of two-fermion reduced density matrices , 2016 .

[27]  Michael Joswig,et al.  polymake: a Framework for Analyzing Convex Polytopes , 2000 .

[28]  S. Crawford,et al.  Volume 1 , 2012, Journal of Diabetes Investigation.

[29]  Tomasz Macia̧żek,et al.  Quantum marginals from pure doubly excited states , 2017, 1705.05445.

[30]  K. Allegaert,et al.  (Preprint) , 2018 .

[31]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[32]  L. Mirsky,et al.  Results and problems in the theory of doubly-stochastic matrices , 1963 .

[33]  Bogdan Ichim,et al.  The power of pyramid decomposition in Normaliz , 2012, J. Symb. Comput..

[34]  D. Mazziotti Structure of fermionic density matrices: complete N-representability conditions. , 2011, Physical review letters.

[35]  Jerzy Cioslowski,et al.  Many-Electron Densities and Reduced Density Matrices , 2012 .

[36]  Matthias Christandl,et al.  The Spectra of Quantum States and the Kronecker Coefficients of the Symmetric Group , 2006 .

[37]  A. Mitra,et al.  On The Foundations Of Quantum Theory , 2005 .

[38]  K. Dennis,et al.  The conditions on the one-matrix for three-body fermion wavefunctions with one-rank equal to six , 1972 .

[39]  A. J. Coleman Necessary Conditions for N‐Representability of Reduced Density Matrices , 1972 .

[40]  N. Arkani-Hamed,et al.  Positive Configuration Space , 2020, 2003.03904.

[41]  Michael Walter,et al.  Multipartite Quantum States and their Marginals , 2014, 1410.6820.

[42]  Oliveira,et al.  Rayleigh-Ritz variational principle for ensembles of fractionally occupied states. , 1988, Physical review. A, General physics.

[43]  Victor Reiner,et al.  Shifted Set Families, Degree Sequences, and Plethysm , 2008, Electron. J. Comb..

[44]  A. Knutson The symplectic and algebraic geometry of Horn's problem , 1999, math/9911088.

[45]  Nicholas Matteo Combinatorially Two-Orbit Convex Polytopes , 2016, Discret. Comput. Geom..

[46]  S. Sternberg,et al.  Convexity properties of the moment mapping , 1982 .

[47]  R. Tennant Algebra , 1941, Nature.

[48]  A. J. Coleman Reduced density matrices—Then and now* , 2001 .

[49]  A. Klyachko,et al.  The Pauli Principle Revisited , 2008, 0802.0918.

[50]  Alexander Heaton,et al.  Dual matroid polytopes and internal activity of independence complexes , 2020, 2005.04252.

[51]  Komei Fukuda Exact algorithms and software in optimization and polyhedral computation , 2008, ISSAC '08.

[52]  I. Gelfand,et al.  Combinatorial Geometries, Convex Polyhedra, and Schubert Cells , 1987 .

[53]  James Cruickshank,et al.  Rearrangement Inequalities and the Alternahedron , 2006, Discret. Comput. Geom..

[54]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[55]  Charles P. Enz,et al.  Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren , 1988 .

[56]  A. J. Coleman THE STRUCTURE OF FERMION DENSITY MATRICES , 1963 .

[57]  Frieder Ladisch,et al.  Affine symmetries of orbit polytopes , 2014, 1411.0899.

[58]  Tatiana Gvozdeva,et al.  Simplicial Complexes Obtained from Qualitative Probability Orders , 2011, SIAM J. Discret. Math..

[59]  A. Klyachko The Pauli exclusion principle and beyond , 2009, 0904.2009.

[60]  A. Klyachko Quantum marginal problem and N-representability , 2005, quant-ph/0511102.

[61]  Paul H. Edelman Ordering Points by Linear Functionals , 2000, Eur. J. Comb..

[62]  Herbert Edelsbrunner,et al.  Cutting dense point sets in half , 1994, SCG '94.

[63]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[64]  The Hopf algebra of identical, fermionic particle systems—Fundamental concepts and properties , 2003 .

[65]  Artur Andrzejak,et al.  In between k -Sets, j -Facets, and i -Faces: (i ,j) - Partitions , 2003, Discret. Comput. Geom..

[66]  D. Gale Optimal assignments in an ordered set: An application of matroid theory , 1968 .

[67]  Mary Beth Ruskai,et al.  Connecting N-representability to Weyl's problem: the one-particle density matrix for N = 3 and R = 6 , 2007, 0706.1855.

[68]  Shmuel Onn,et al.  Geometry, Complexity, and Combinatorics of Permutation Polytopes , 1993, J. Comb. Theory A.

[69]  Wojciech Szatzschneider,et al.  An Inequality , 1991, SIAM Rev..

[70]  H. Kummer n‐Representability Problem for Reduced Density Matrices , 1967 .

[71]  Bernd Sturmfels,et al.  Cellular strings on polytopes , 1994 .

[72]  Christian Schilling,et al.  Ensemble Reduced Density Matrix Functional Theory for Excited States and Hierarchical Generalization of Pauli's Exclusion Principle. , 2021, Physical review letters.

[73]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[74]  Arkady Berenstein,et al.  Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion , 1998 .

[75]  Richard P. Stanley Valid Orderings of Real Hyperplane Arrangements , 2015, Discret. Comput. Geom..

[76]  A. Klyachko Stable bundles, representation theory and Hermitian operators , 1998 .

[77]  B. Kostant On convexity, the Weyl group and the Iwasawa decomposition , 1973 .

[78]  Matthias Christandl,et al.  Quantum computational complexity of the N-representability problem: QMA complete. , 2007, Physical review letters.

[79]  Victor Reiner,et al.  The Generalized Baues Problem , 1999 .

[80]  J. Percus,et al.  Reduction of the N‐Particle Variational Problem , 1964 .

[81]  Arnau Padrol,et al.  Sweeps, polytopes, oriented matroids, and allowable graphs of permutations , 2021, ArXiv.

[82]  L. Williams,et al.  The Positive Tropical Grassmannian, the Hypersimplex, and the m = 2 Amplituhedron , 2020, International Mathematics Research Notices.

[83]  Chen Ning Yang,et al.  Concept of Off-Diagonal Long-Range Order and the Quantum Phases of Liquid He and of Superconductors , 1962 .

[84]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[85]  A. Postnikov,et al.  Coxeter submodular functions and deformations of Coxeter permutahedra , 2019, Advances in Mathematics.

[86]  A. Kirillov Lectures on the Orbit Method , 2004 .

[87]  László Babai,et al.  Symmetry groups of vertex-transitive polytopes , 1977 .

[88]  A. J. Coleman,et al.  Reduced Density Matrices , 2000 .

[89]  Caroline J. Klivans Threshold graphs, shifted complexes, and graphical complexes , 2007, Discret. Math..